THE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S

Authors

  • S. Fayazzadeh Islamic Azad University, Central Tehran Branch, Iran Iran, Islamic Republic of Department of Mathematics
  • S. S. Mirshojaei Islamic Azad University, Central Tehran Branch, Iran Iran, Islamic Republic of Department of Mathematics
Abstract:

In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Numerical Solution of The Parabolic Equations by Variational Iteration Method and Radial Basis Functions

‎In this work‎, ‎we consider the parabolic equation‎: ‎$u_t-u_{xx}=0$‎. ‎The purpose of this paper is to introduce the method of‎ ‎variational iteration method and radial basis functions for‎ ‎solving this equation‎. ‎Also, the method is implemented to three‎ ‎numerical examples‎. ‎The results reveal‎ ‎that the technique is very effective and simple.

full text

Numerical Solution of Nonlinear PDEs by Using Two-Level Iterative Techniques and Radial Basis Functions

‎Radial basis function method has been used to handle linear and‎ ‎nonlinear equations‎. ‎The purpose of this paper is to introduce the method of RBF to‎ ‎an existing method in solving nonlinear two-level iterative‎ ‎techniques and also the method is implemented to four numerical‎ ‎examples‎. ‎The results reveal that the technique is very effective‎ ‎and simple. Th...

full text

Using Chebyshev polynomial’s zeros as point grid for numerical solution of nonlinear PDEs by differential quadrature- based radial basis functions

Radial Basis Functions (RBFs) have been found to be widely successful for the interpolation of scattered data over the last several decades. The numerical solution of nonlinear Partial Differential Equations (PDEs) plays a prominent role in numerical weather forecasting, and many other areas of physics, engineering, and biology. In this paper, Differential Quadrature (DQ) method- based RBFs are...

full text

The use of inverse quadratic radial basis functions for the solution of an inverse heat problem

‎In this paper‎, ‎a numerical procedure for an inverse problem of‎ ‎simultaneously determining an unknown coefficient in a semilinear ‎parabolic equation subject to the specification of the solution at‎ ‎an internal point along with the usual initial boundary conditions ‎is considered‎. ‎The method consists of expanding the required‎ ‎approximate solution as the elements of the inverse quadrati...

full text

The method of radial basis functions for the solution of nonlinear Fredholm integral equations system.

In this paper, An effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (RBFs). We present an algorithm based on interpolation by radial basis functions including multiquadratics (MQs), using Legendre-Gauss-Lobatto nodes and weights. Also a theorem is proved for convergence of the algorithm. Some numerical examples are presented...

full text

on the comparison of keyword and semantic-context methods of learning new vocabulary meaning

the rationale behind the present study is that particular learning strategies produce more effective results when applied together. the present study tried to investigate the efficiency of the semantic-context strategy alone with a technique called, keyword method. to clarify the point, the current study seeked to find answer to the following question: are the keyword and semantic-context metho...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 2 (SPRING)

pages  149- 157

publication date 2011-03-21

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023