Synthesis and characterization ZnFe2O4@MnO and MnFe2O4@ZnO magnetic nanocomposites: Investigation of photocatalytic activity for the degradation of Congo Red under visible light irradiation

Authors

  • Azam Zamani Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran.
  • Mohammad Yousefi Department of Chemistry, Yadegar-e-Imam khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran.
  • Nazanin Farhadyar Department of Chemistry, Varamin Pishva Branch, Islamic Azad University, Varamin, Iran.
Abstract:

In the present investigation, ZnFe2O4@MnO and MnFe2O4@ZnO magnetic nanocomposites were fabricated via a facile hydrothermal method and were calcined at 300 °C for 3 h. Synthesis of ZnFe2O4@MnO and MnFe2O4@ZnO magnetic nanocomposites optimized by the different weight percentages. The synthesized photocatalyst was characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Vibrating Sample Magnetometer (VSM), EDAX (Energy dispersive X-ray Analysis), diffuse reflectance UV-vis spectroscopy (DRS)  and field emission scanning electron microscopy (FESEM). The ZnFe2O4@MnO nanoparticles were found to have 20-50 nm. Magnetic studies revealed that the ZnFe2O4@MnO and MnFe2O4@ZnO nanocomposites can be easily separated from the solution by an external magnetic field. The photocatalytic degradation of Congo red dye (CR) was investigated based on the removal of Congo red (CR) in aqueous solution in 35 min of visible light irradiation. Compared with MnFe2O4@ZnO nanocomposite, the ZnFe2O4@MnO nanocomposite showed high photocatalytic performance on the photodegradation of Congo red. Effect of reaction time, pH, and loading of ZnO on degradation of CR was studied,The results demonstrated that the degradation efficiency of ZnFe2O4@MnO nanocomposite (98.5%) was better than that of MnFe2O4@ZnO nanocomposite (90.32%), which is due to the presence of narrow band gap energy of [email protected] studies have displayed  that the degradation of CR by the prepared of photocatalysts follows the pseudo-first-order kinetics and the rate constant achieved for ZnFe2O4@MnO (k=0.0371 min−1) was much greater than of MnFe2O4@ZnO (k=0.0321 min−1). The synthesized ZnFe2O4@MnO nanocomposite can be potentially applied as a magnetically separable photocatalyst to deal with water pollution problems.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Hydrothermally synthesized nanocrystalline Nb2O5 and its visible-light photocatalytic activity for the degradation of congo red and methylene blue

Nb2O5 nanoparticles were synthesized by the hydrothermal method. Structural, morphological and elemental analysis of synthesized Nb2O5 nanoparticles was carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy, respectively. The average crystal size calculations were performed on the basis ...

full text

Hydrothermally synthesized nanocrystalline Nb2O5 and its visible-light photocatalytic activity for the degradation of congo red and methylene blue

Nb2O5 nanoparticles were synthesized by the hydrothermal method. Structural, morphological and elemental analysis of synthesized Nb2O5 nanoparticles was carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy, respectively. The average crystal size calculations were performed on the basis ...

full text

Synthesis and characterization of Mg1-xNixAl2O4 and their photocatalytic behaviors towards Congo red under UV light irradiation

In this paper, MgAl2O4 nanoparticles were synthesized by the Sol-gel auto combustion method and were doped with different concentrations of Ni2+ (x= 0, 0.1, 0.05, and 0.03). By this method, a novel photocatalyst which had better decolorization percentages of Congo redcompared to MgAl2O4 was produced. The MgAl2O4 sample...

full text

Sonosynthesis and Characterization of TiO2/ZrO2 Nanocomposite and Photocatalytic degradation of Congo red Dye under UV Light

NanoTiO2 , nanoZrO2 and TiO2 /ZrO2 nanocomposite were prepared via sol gel method by using ultrasonic irradiation. The precursor sol of zirconium was prepared from an aqueous solution of ZrCl4 and titanium tetra 2-propoxide was diluted by 2-propanol and deionized water The TiO2 /ZrO2 nanocomposite was synthesized from directly mixing Titanium dried gel into Zirconium gel. The reaction mixture w...

full text

The Study of Photocatalytic Degradation Mechanism under Visible Light Irradiation on BiOBr/Ag Nanocomposite

Due to the pollution of dyeing and textile industry wastewaters in different colors and the need to remove these pollutants from the wastewaters, it is necessary to study and develop effective and efficient technology solutions required. To remove dye from aqueous solutions, photodegradation is employed as an effectively simple way. Thus, the BiOBr photocatalyst was chemically made by synthesis...

full text

Comparison of different methods for the synthesis of ZnO based nanocomposites and investigation of photocatalytic degradation of Direct Red 23

In this work, the photocatalytic degradation of organic dyes was studied employing zinc oxide based nanocomposites. In this purpose, ZnO based nanocomposites were synthesized using three different procedures including co-precipitation, hydrothermal and combustion methods. The samples were characterized by SEM, XRD, IR and UV-Vis spectrophotometer. Afterwards, the prepared samples were utilized ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 1

pages  58- 73

publication date 2020-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023