Study on the Effect of Laser Welding Parameters on the Microstructure and Mechanical Properties of Ultrafine Grained 304L Stainless Steel
Authors
Abstract:
In the present study, an ultrafine grained (UFG) 304L stainless steel with the average grain size of 300 nm was produced by a combination of cold rolling and annealing. Weldability of the UFG sample was studied by Nd: YAG laser welding under different welding conditions. Taguchi experimental design was used to optimize the effect of frequency, welding time, laser current and laser pulse duration on the resultant microstructure and mechanical properties. X-ray Diffraction (XRD), Optical Microscope (OM), Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM), microhardness measurements and tension tests were conducted to characterize the sample after thermomechanical processing and laser welding. The results showed that the ultrafine grained steel had the yield strength of 1000 Mpa and the total elongation of 48%, which were almost three times higher than those of the as-received sample. The microstructure of the weld zone was shown to be a mixture of austenite and delta ferrite. The microhardness of the optimized welded sample (315 HV0.5) was found to be close to the UFG base metal (350 HV). It was also observed that the hardness of the heat affected zone (HAZ) was lower than that of the weld zone, which was related to the HAZ grain growth during laser welding. The results of optimization also showed that the welding time was the most important parameter affecting the weld strength. Overall, the study showed that laser welding could be an appropriate and alternative welding technique for the joining of UFG steels.
similar resources
study on the effect of laser welding parameters on the microstructure and mechanical properties of ultrafine grained 304l stainless steel
in the present study, an ultrafine grained (ufg) 304l stainless steel with the average grain size of 300 nm was produced by a combination of cold rolling and annealing. weldability of the ufg sample was studied by nd: yag laser welding under different welding conditions. taguchi experimental design was used to optimize the effect of frequency, welding time, laser current and laser pulse duratio...
full textthe effect of traffic density on the accident externality from driving the case study of tehran
در این پژوهش به بررسی اثر افزایش ترافیک بر روی تعداد تصادفات پرداخته شده است. به این منظور 30 تقاطع در شهر تهران بطور تصادفی انتخاب گردید و تعداد تصادفات ماهیانه در این تقاطعات در طول سالهای 89-90 از سازمان کنترل ترافیک شهر تهران استخراج گردید و با استفاده از مدل داده های تابلویی و نرم افزار eviews مدل خطی و درجه دوم تخمین زده شد و در نهایت این نتیجه حاصل شد که تقاطعات پر ترافیک تر تعداد تصادفا...
15 صفحه اولthe effect of consciousness raising (c-r) on the reduction of translational errors: a case study
در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...
15 صفحه اولthe effect of explicit teaching of metacognitive vocabulary learning strategies on recall and retention of idioms
چکیده ندارد.
15 صفحه اولMartensite phase reversion-induced nano/ ultrafine grained AISI 304L stainless steel with magnificent mechanical properties
Austenitic stainless steels are extensively used in various applications requiring good corrosion resistance and formability. In the current study, the formation of nano/ ultrafine grained austenitic microstructure in a microalloyed AISI 304L stainless steel was investigated by the advanced thermomechanical process of reversion of strain-induced martensite. For this purpose, samples were subjec...
full textAn Investigation on Mechanical Properties of Ultrafine Grained 316 Stainless Steel by Thermomechanical Treatment
In this paper, an advanced thermo-mechanical treatment was conducted on AISI 316 austenitic stainless steel. At first, three samples were rolled at the ambient temperature, the temperature of -20 ºC (dry ice and ethanol) and -196 ºC (liquid nitrogen). Then, the samples were annealed at 800 ºC in the time range of 1 to 15 minutes. In each step, the microhardness values of the samples were measur...
full textMy Resources
Journal title
volume 49 issue 2
pages 120- 127
publication date 2016-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023