Static and Free Vibration Analyses of Orthotropic FGM Plates Resting on Two-Parameter Elastic Foundation by a Mesh-Free Method
author
Abstract:
In this paper, static and free vibrations behaviors of the orthotropic functionally graded material (FGM) plates resting on the two-parameter elastic foundation are analyzed by the a mesh-free method based on the first order shear deformation plate theory (FSDT). The mesh-free method is based on moving least squares (MLS) shape functions and essential boundary conditions are imposed by transfer function method. The orthotropic FGM plates are made of two orthotropic materials and their volume fractions are varied smoothly along the plate thickness. The convergence of the method is demonstrated and to validate the results, comparisons are made with finite element method (FEM) and the others available solutions for both homogeneous and FGM plates then numerical examples are provided to investigate the effects of material distributions, elastic foundation coefficients, geometrical dimensions, applied force and boundary conditions on the static and vibrational characteristics of the orthotropic FGM plates.
similar resources
Mesh-free Dynamic Analyses of FGM Sandwich Plates Resting on A Pasternak Elastic Foundation
This study analyzes the free vibration, forced vibration, resonance, and stress wave propagation of orthotropic sandwich plates made of functionally graded materials (FGMs). Dynamic analyses are conducted using a mesh-free method based on first-order shear deformation theory and the shape functions constructed using moving least squares approximation. The sandwich plates are rested on a Pastern...
full textA Semi-Analytical Solution for Free Vibration and Modal Stress Analyses of Circular Plates Resting on Two-Parameter Elastic Foundations
In the present research, free vibration and modal stress analyses of thin circular plates with arbitrary edge conditions, resting on two-parameter elastic foundations are investigated. Both Pasternak and Winkler parameters are adopted to model the elastic foundation. The differential transform method (DTM) is used to solve the eigenvalue equation yielding the natural frequencies and mode shape...
full textFree Vibration Analyses of Functionally Graded CNT Reinforced Nanocomposite Sandwich Plates Resting on Elastic Foundation
In this paper, a refined plate theory is applied to investigate the free vibration analysis of functionally graded nanocomposite sandwich plates reinforced by randomly oriented straight carbon nanotube (CNT). The refined shear deformation plate theory (RSDT) uses only four independent unknowns and accounts for a quadratic variation of the transverse shear strains across the thickness, and satis...
full textFree Vibration Analysis of Orthotropic FGM Cylinders by a Mesh-Free Method
In this paper, free vibration analysis of orthotropic functionally graded material (FGM) cylinders was carried out by a Mesh-Free method. In this analysis, moving least squares shape functions are used for approximation of displacement field in the weak form of equilibrium equation. Essential boundary conditions are imposed by transformation method. In this simulation, an axisymmetric model is ...
full textNumerical free vibration analysis of higher-order shear deformable beams resting on two-parameter elastic foundation
Free vibration analysis of higher-order shear deformation beam resting on one- and two-parameter elasticfoundation is studied using differential transform method (DTM) as a part of a calculation procedure. First,the governing differential equations of beam are derived in a general form considering the shear-freeboundary conditions (zero shear stress conditions at the top and bottom of a beam). ...
full textBending and Free Vibration Analyses of Rectangular Laminated Composite Plates Resting on Elastic Foundation Using a Refined Shear Deformation Theory
In this paper, a closed form solution for bending and free vibration analyses of simply supported rectangular laminated composite plates is presented. The static and free vibration behavior of symmetric and antisymmetric laminates is investigated using a refined first-order shear deformation theory. The Winkler–Pasternak two-parameter model is employed to express the interaction between the lam...
full textMy Resources
Journal title
volume 9 issue 2
pages 396- 410
publication date 2017-06-30
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023