Some Edge Cut Sets and an Upper bound for Edge Tenacity of Organic Compounds CnH2n+2

Authors

Abstract:

The graphs play an important role in our daily life. For example, the urban transport network can be represented by a graph, as the intersections are the vertices and the streets are the edges of the graph. Suppose that some edges of the graph are removed, the question arises, how damaged the graph is. There are some criteria for measuring the vulnerability of graph; the tenacity is the best criteria for measuring it. In this paper, we nd some edge cut sets for organic compounds CnH2n+2 and obtain an upper bound for Te(CnH2n+2) by these edge cut sets.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

An upper bound for the regularity of powers of edge ideals

‎A recent result due to Ha and Van Tuyl proved that the Castelnuovo-Mumford regularity of the quotient ring $R/I(G)$ is at most matching number of $G$‎, ‎denoted by match$(G)$‎. ‎In this paper‎, ‎we provide a generalization of this result for powers of edge ideals‎. ‎More precisely‎, ‎we show that for every graph $G$ and every $sgeq 1$‎, ‎$${rm reg}( R‎/ ‎I(G)^{s})leq (2s-1) |E(G)|^{s-1} {rm ma...

full text

Edge-tenacity in Networks

Numerous networks as, for example, road networks, electrical networks and communication networks can be modeled by a graph. Many attempts have been made to determine how well such a network is "connected" or stated differently how much effort is required to break down communication in the system between at least some nodes. Two well-known measures that indicate how "reliable" a graph is are the...

full text

The edge tenacity of a split graph

The edge tenacity Te(G) of a graph G is dened as:Te(G) = min {[|X|+τ(G-X)]/[ω(G-X)-1]|X ⊆ E(G) and ω(G-X) > 1} where the minimum is taken over every edge-cutset X that separates G into ω(G - X) components, and by τ(G - X) we denote the order of a largest component of G. The objective of this paper is to determine this quantity for split graphs. Let G = (Z; I; E) be a noncomplete connected split...

full text

Sufficient conditions for maximally edge-connected and super-edge-connected

Let $G$ be a connected graph with minimum degree $delta$ and edge-connectivity $lambda$. A graph ismaximally edge-connected if $lambda=delta$, and it is super-edge-connected if every minimum edge-cut istrivial; that is, if every minimum edge-cut consists of edges incident with a vertex of minimum degree.In this paper, we show that a connected graph or a connected triangle-free graph is maximall...

full text

The effect of the angle upper edge in shaped noise barriers with a T-shaped upper edge

Background and Objective: Efforts to improve the effectiveness of noise barriers have been made, including shape, aesthetics, form and gender. Therefore, the aim of this study was to investigate the effect of the angle upper edge in shaped noise barriers with a T-shaped upper edge. Materials and Methods: A 2D boundary element method (BEM) was used to predict the insertion loss of the tested ba...

full text

the edge tenacity of a split graph

the edge tenacity te(g) of a graph g is de ned as:te(g) = min {[|x|+τ(g-x)]/[ω(g-x)-1]|x ⊆ e(g) and ω(g-x) > 1} where the minimum is taken over every edge-cutset x that separates g into ω(g - x) components, and by τ(g - x) we denote the order of a largest component of g. the objective of this paper is to determine this quantity for split graphs. let g = (z; i; e) be a noncomplete connected spli...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 1

pages  1- 21

publication date 2020-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023