Solving a Redundancy Allocation Problem by a Hybrid Multi-objective Imperialist Competitive Algorithm
Authors
Abstract:
A redundancy allocation problem (RAP) is a well-known NP-hard problem that involves the selection of elements and redundancy levels to maximize the system reliability under various system-level constraints. In many practical design situations, reliability apportionment is complicated because of the presence of several conflicting objectives that cannot be combined into a single-objective function. As telecommunications, manufacturing and power systems are becoming more and more complex, while requiring short developments schedules and very high reliability, it is becoming increasingly important to develop efficient solutions to the RAP. In this paper, a new hybrid multi-objective imperialist competition algorithm (HMOICA) based on imperialist competitive algorithm (ICA) and genetic algorithm (GA) is proposed for the first time in multi-objective redundancy allocation problems. In the multi-objective formulation, the system reliability is maximized while the cost and volume of the system are minimized simultaneously. Additionally, a response surface methodology (RSM) is employed to tune the ICA parameters. The proposed HMOICA is validated by some examples with analytical solutions. It shows its superior performance compared to a non-dominated sorting genetic algorithm (NSGA-II) and Pareto archive evolution strategy algorithm (PAES). Finally, the conclusion is given.
similar resources
A Multi-objective Imperialist Competitive Algorithm for a Capacitated Single-allocation Hub Location Problem
In this paper, we present a novel multi-objective mathematical model for capacitated single allocation hub location problem. There are the vehicle capacity constraint and capacity restrictions amount of the incoming flow to the hub while the balancing requirements of incoming quantities of flow to the each hub is considered. Moreover, there is a set of available capacities for each potential hu...
full textA New Multi-Objective Inventory-Routing Problem by an Imperialist Competitive Algorithm
One of the most important points in a supply chain is customer-driven modeling, which reduces the bullwhip effect in the supply chain, as well as the costs of investment on the inventory and efficient transshipment of the products. Their homogeneity is reflected in the inventory-routing problem, which is a combination of distribution and inventory management. This paper considers a multi object...
full textEfficiency of a multi-objective imperialist competitive algorithm: A bi-objective location-routing-inventory problem with probabilistic routes
An integrated model considers all parameters and elements of different deficiencies in one problem. This paper presents a new integrated model of a supply chain that simultaneously considers facility location, vehicle routing and inventory control problems as well as their interactions in one problem, called location-routing-inventory (LRI) problem. This model also considers stochastic demands ...
full textsolution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
A redundancy allocation problem with the choice of redundancy strategies by a memetic algorithm
This paper proposes an efficient algorithm based on memetic algorithm (MA) for a redundancy allocation problem without component mixing (RAPCM) in a series-parallel system when the redundancy strategy can be chosen for individual subsystems. Majority of the solution methods for the general RAPCM assume that the type of a redundancy strategy for each subsystem is pre-determined and known a prior...
full textA Memtic genetic algorithm for a redundancy allocation problem
Abstract In general redundancy allocation problems the redundancy strategy for each subsystem is predetermined. Tavakkoli- Moghaddam presented a series-parallel redundancy allocation problem with mixing components (RAPMC) in which the redundancy strategy can be chosen for individual subsystems. In this paper, we present a bi-objective redundancy allocation when the redundancy strategies for...
full textMy Resources
Journal title
volume 26 issue 9
pages 1031- 1042
publication date 2013-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023