Size-Dependent Green’s Function for Bending of Circular Micro Plates Under Eccentric Load

Authors

  • E Jomehzadeh Faculty of Mechanical and Material Engineering, Graduate University of Advanced Technology, Kerman, Iran
  • M Rezaeizadeh Faculty of Mechanical and Material Engineering, Graduate University of Advanced Technology, Kerman, Iran
  • M Shahrokhi Faculty of Mechanical and Material Engineering, Graduate University of Advanced Technology, Kerman, Iran
Abstract:

In this paper, a Green’s function is developed for bending analysis of micro plates under an asymmetric load. In order to consider the length scale effect, the modified couple stress theory is used. This theory can accurately predict the behavior of micro structures. A thin micro plate is considered and therefore the classical plate theory is utilized. The size dependent governing equilibrium equation of a circular micro plate under an eccentric load is obtained by using the minimum total potential energy principle. This equation is a partial differential equation and it is hard to solve it for an arbitrary loading. A transformation of the coordinate system is introduced to obtain the asymmetric exact solution for deflection of circular micro-plates. By using the obtained size dependent Green’s function, the bending behavior of microplates under arbitrary loads can be easily defined. The results are presented for different asymmetric loads. Also, it is concluded that the length scale has a significant effect on bending of micro plates.                       

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Asymmetric buckling analysis of the circular FGM plates with temperature-dependent properties under elastic medium

In this paper, Asymmetric buckling analysis of functionally graded (FG) Circular plates with temperature dependent property that subjected to the uniform radial compression and thermal loading is investigated. This plate is on an elastic medium that simulated by Winkler and Pasternak foundation. Mechanical properties of the plate are assumed to vary nonlinearly by temperature change. The equili...

full text

Load Carrying Capacity of Simply Supported Variable Thickness Circular Plates

The calculation of the load carrying capacity of variable thickness circular plates subjected to arbitrary rotational symmetric loading is presented. The analysis considers plate materials that obey either the square or the Tresca yield criterion. By using upper and lower bound theorems of limit analysis, corresponding estimations for the load carrying capacity of the plate are obtained. It is ...

full text

Size-dependent Bending of Geometrically Nonlinear of Micro-Laminated Composite Beam based on Modified Couple Stress Theory

In this study, the effect of finite strain on bending of the geometrically nonlinear of micro laminated composite Euler-Bernoulli beam based on Modified Couple Stress Theory (MCST) is studied in thermal environment. The Green-Lagrange strain tensor according to finite strain assumption and the principle of minimum potential energy is applied to obtain governing equation of motion and boundary c...

full text

An Analytical Solution on Size Dependent Longitudinal Dynamic Response of SWCNT Under Axial Moving Harmonic Load

The main purposes of the present work are devoted to the investigation of the free axial vibration, as well as the time-dependent and forced axial vibration of a SWCNT subjected to a moving load. The governing equation is derived through using Hamilton's principle. Eringen’s nonlocal elasticity theory has been utilized to analyze the nonlocal behaviors of SWCNT. A Galerkin method based on a clo...

full text

asymmetric buckling analysis of the circular fgm plates with temperature-dependent properties under elastic medium

in this paper, asymmetric buckling analysis of functionally graded (fg) circular plates with temperature dependent property that subjected to the uniform radial compression and thermal loading is investigated. this plate is on an elastic medium that simulated by winkler and pasternak foundation. mechanical properties of the plate are assumed to vary nonlinearly by temperature change. the equili...

full text

Numerical Investigation of Circular Plates Deformation under Air Blast Wave

In the current research the maximum deflection of circular plates made of AA5010 and AA1100 alloys under blast load was investigated. Shock waves were produced by exploding a spherical charge in different distances from the center of plates. The ABAQUS software uses conwep equation for blast loading analysis. It was found the results of these simulations have about 30% to 40% inaccuracy in comp...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 1

pages  14- 25

publication date 2019-03-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023