Simulation of flow pattern in intake by using a numerical model

Authors

  • Ali Shahidi Associate Professor, Water Engineering Department, University of Birjand
  • Mehdi Kahe Ph.D. Graduate, Hydraulic Structures Department, Shahid Chamran University of Ahvaz
  • Yousef Ramezani Assistant Professor, Water Engineering Department, University of Birjand
Abstract:

Lateral intake is a structure constructed next to a main channel to divert part of the flow within the channel. The separated area of the flow in the entrance of intake channel has no effect on flow discharge while reduces the effective cross-sectional area of the intake, as well as the bed load, which enters the intake due to low velocity flow deposits in this area. Thus, knowing the dimensions of the separated area at the intake channel entrance is particularly important. In this study, flow separation zone was calculated at the intake entrance of 90 degree in three depths of 3, 6, and 12 cm from the bottom of the channel for discharge ratios of 0.2 and 0.4, 0.6 and 0.8 in five turbulence models using three-dimensional Flow-3D model. In order to determine the accuracy of the model in predicting the dimensions of the separated areas, the obtained results were compared with the results of the physical model. Streamlines were drawn and dimensions of the separated areas were determined. In comparing results between the laboratory observations and the predicted ones by numerical model, Reynolds Normal Group model (RNG) had better predictions, with a correlation coefficient of 0.97, root mean square error of 3.16, and a mean absolute error of 2.3 cm, than other turbulence models.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Evaluation of Recirculation Time in Bubble Train Flow by Using Direct Numerical Simulation

In this research, hydrodynamics of the Bubble Train Flows (BTF) in circular capillaries has been investigated by Direct Numerical Simulation (DNS).The Volume of Fluid Based (VOF) interface tracking method and streamwise direction periodic boundary conditions has been applied. The results show that there exists an appropriate agreement between DNS and experimental correlation results. The re...

full text

Simulation of local scour caused by submerged horizontal jets with Flow-3D numerical model

One of the most concerning issues for researchers is to predict the shape and dimensions of the scour pit nearhydraulic structures such as the base of bridges, weirs, valves and stilling basins due to both financial and humanhazards induced by destruction of the structure. As the scour issue has its own complexity in relation to themultiplicity of effecting factors on it, in this study therefor...

full text

Groundwater recharge simulation using a coupled saturated-unsaturated flow model

Abstract The coupled MODFLOW-HYDRUS software package was used to produce a saturated-unsaturated flow model for a Flood Spreading System (FSS) and its associated aquifer. The study aim to improve simulations of near-surface hydrological processes, including temporal and spatial variation in groundwater recharge rates. The coupled model was built with average RMSE=1.1 and 1.3 for calibration ...

full text

Numerical Simulation of Fluid Flow Past a Square Cylinder Using a Lattice Boltzmann Method

The method of lattice boltzmann equation(LBE) is a kinetic-based approach for fluid flow computations. In the last decade, minimal kinetic models, and primarily the LBE, have met with significant success in the simulation of complex hydrodynamic phenomena, ranging from slow flows in grossly irregular geometries to fully developed turbulence, to flow with dynamic phase transitions. In the presen...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 1

pages  24- 36

publication date 2017-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023