Response surface method Optimization of the Dyes Degradation using Zero-Valent Iron based Bimetallic Nanoparticle on the Bentonite Clay Surface
Authors
Abstract:
Immobilizing of zero-valent iron in mono- and bi-metallic systems on the bentonite clay surface as new nanocatalyst were synthesized and used to degrade model acidic dyes from aqueous media. The Fourier-transform infrared spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller analysis were used to characterize the synthesized nanocomposites, which demonstrated successful loading of nanoscale Fe-Cu bi-metallic onto bentonite support. Different variables controlling the congo red, methyl orange and methyl red dyes degradation using zero-valent iron based bimetallic nanoparticle on the bentonite clay surface as new nanocatalyst were concurrently optimized through an experimental design. Basic evaluations proved the nanocatalyst quantity, medium pH, initial dye concentration, and contact time as the most important variables influencing the degradation phenomenon and hence a response surface methodology based on the central composite design was conducted to determine the relations between the variables and the degradation efficiencies. The statistical factors (e.g. R2 and F-value) of the derived models were considered. Using response surface plots obtained through the models, the effects of the variables on the degradation efficiencies for each dye were assessed. Also, the Nelder-Mead non-linear optimizations were performed and the optimal degradation efficiencies at a 95% confidence level were determined which were found to comply with the respective experimental response values.
similar resources
Evaluating the Efficiency of the Fenton-Ultrasonic Process in Degradation of Trihalomethanes Precursors from Aqueous Environments Using Zero Iron by Response Surface Method
Background: The reaction of natural organic matters (NOMs) with chlorine in the conventional disinfection process results in disinfection by-products (DBP) such as trihalomethanes and haloacetic acids. Due to the potential health risks of trihalomethanes for public health, it has attracted a lot of attention. The purpose of this study is to investigate the performance of combined Fenton-ultraso...
full textOptimization of photo-degradation of direct blue 258 using nano Titanium Oxide with response surface method
The photodegradation of Direct Blue 258, a member of the group of azo dyes which are commonly used in the various branches of the industry, was studied. The photostability of this dye was not previously surveyed. Photocatalytic degradation method was evaluated. The both light source include solar simulated (UV 400 W lamp) and sun light (E= 400 W/m2) and titanium dioxide nanoparticles were used ...
full textOptimization of photo-degradation of direct blue 258 using nano Titanium Oxide with response surface method
The photodegradation of Direct Blue 258, a member of the group of azo dyes which are commonly used in the various branches of the industry, was studied. The photostability of this dye was not previously surveyed. Photocatalytic degradation method was evaluated. The both light source include solar simulated (UV 400 W lamp) and sun light (E= 400 W/m2) and titanium dioxide nanoparticles were used ...
full textmodeling nitrate removal by nano-scaled zero-valent iron using response surface methodology
background contamination of water resources with nitrate is a serious environmental problem in many regions of the world. in addition, this problem has been observed in some regions of iran. as nitrate is threatening for human health and environment, it must be decreased to standard levels in drinking water. objectives the purpose of this research was to model the nitrate removal from water by ...
full textOptimization of Moving Wingin Ground Effect using Response Surface Method
Optimization of the sectional wing in ground effect (WIG) has been studied using ahigh order numerical procedure and response surface method (RSM). Initially, the effects of the ground clearance, angle of attack, thickness, and camber of wing have been investigated by a high-resolutionscheme, which is highlystrong and accurate. In the numerical simulation, Normalized Variable Diagram (NVD) sche...
full textMy Resources
Journal title
volume 6 issue 3
pages 581- 595
publication date 2020-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023