Removing Copper from Contaminated Water Using Activated Carbon Sorbent by Continuous Flow
Authors
Abstract:
Introduction: A major concern of human being is accumulation and toxicity of heavy metals in their body. Copper is a heavy metal ion that in concentration of 2 mg/l can cause numerous complications. Different treatment methods have been proposed for removing metals from contaminated water by researchers. Among these methods, sorption seems a better method with high removal efficiency. In this study, conditions for removal of copper ions by activated carbon sorbent were studied with continuous flow. Materials & Methods: This was a laboratory – experimental study. A 20mg/l solution of copper ions was prepared and passed through a 5 × 10 cm column with average output rate of 1.85 ml/min. Output of column was sampled every 30 minutes and the remaining amount of copper ion in each sample was measured by flame atomic absorption. Results: The empty bed volume (EBV) was equal to 138 ml. The highest removal efficiency was 99.7 percent at 127 minutes. From equilibrium time, the removal efficiency was constant with time. The adsorption capacity of activated carbon was 0.25mg.g-1. The isotherm study indicated that the sorption data can be obeyed by both Langmuir and Freundlich isotherms (R2>0.95) but Langmuir model had higher agreement with this experimental data (R2= 0.988). Conclusion: The binding of ions to the sorbent in the adsorption process is extremely important. For this column 62.5 minutes after filling was appropriate, so the highest removal efficiency was obtained. Equilibrium time was dependent on the speed of influent through the column in the continuous flow. For selected column, the rate of 1.85 ml/min is a good performance.
similar resources
removing copper from contaminated water using activated carbon sorbent by continuous flow
introduction: a major concern of human being is accumulation and toxicity of heavy metals in their body. copper is a heavy metal ion that in concentration of 2 mg/l can cause numerous complications. different treatment methods have been proposed for removing metals from contaminated water by researchers. among these methods, sorption seems a better method with high removal efficiency. in this s...
full textAdsorption of copper, lead and cadmium from aqueous solutions by activated carbon prepared from saffron leaves
Background: Industrial development has caused the release of various pollutants including heavy metals into the environment. These toxic compounds are extremely dangerous to living beings and the environment due to their non-biodegradability, severe toxicity, carcinogenicity, the ability to be accumulated in nature and the ability to contaminate groundwater and surface water. The aim of the pre...
full textSeparation of heavy metal Nickel (II) using a new nano adsorbent string GZ-BAKI-TAC-Ni-88 from Ni contaminated Water using beshel tire activated Carbon
Toxicity has occurred in workers exposed to nickel dust or nickel carbonyl formed in refining. Increased risk of nasal and lung cancers was linked to occupational nickel exposure before current workplace safety standards were set. Activated carbon with nano holes used for removing contaminants in environment. The purpose of this work is preparation a new nano-absorber, GZ-BAKI-TAC-Ni-88, for th...
full textSeparation of heavy metal Nickel (II) using a new nano adsorbent string GZ-BAKI-TAC-Ni-88 from Ni contaminated Water using beshel tire activated Carbon
Toxicity has occurred in workers exposed to nickel dust or nickel carbonyl formed in refining. Increased risk of nasal and lung cancers was linked to occupational nickel exposure before current workplace safety standards were set. Activated carbon with nano holes used for removing contaminants in environment. The purpose of this work is preparation a new nano-absorber, GZ-BAKI-TAC-Ni-88, for th...
full textExtraction and preconcentration of Pb(II) from water and soil samples using modified activated carbon
In this work, a new extractant was prepared by immobilizing ligand 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol, (5-Br-PADAP), on the activated carbon and applied to extraction of Pb(II) prior to determination by flame atomic absorption spectrometry. It was confirmed by FT- IR analysis. The metal ion was retained on the 0.05 g of the sorbent in the pH range 6-8, and then eluted with 5 mL of 0....
full textPreconcentration and Determination of Chromium (III) from Sea Water Samples Using Ion Imprinted Activated Carbon
A simple ion imprinted amino-functionalized sorbent was synthesized by coupling activated carbon with iminodiacetic acid, a functional compound for metal chelating, through cyanoric chloride spacer. The resulting sorbent has been characterized using Fourier transform infrared spectroscopy (FT-IR), elemental analysis, thermogravimetric analysis (TGA) and evaluated for the preconcentration and de...
full textMy Resources
Journal title
volume 1 issue 1
pages 11- 18
publication date 2012-07
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023