Removal of Cd2+ and Zn2+ from industrial wastes using novel magnetic N2,N6-di(thiazol-2-yl)pyridine-2,6-dicarboxamide nanoadsorbent

Authors

  • Amir Abdolmaleki Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
  • Kiomars Zargoosh Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
  • Kourosh Firouz Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
  • Mohammad Rasoul Sohrabi Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
Abstract:

In this workN2,N6-di(thiazol-2-yl)pyridine-2,6-dicarboxamide (DPD), was synthesized via reaction of 2-aminothiazole and 2,6- pyridinedicarboxylic acid in n-methylpyrrolidine. The obtained (DPD) was characterized with nuclear magnetic resonance spectroscopy (NMR), Fourier transform infrared (FT-IR) spectroscopy, and elemental analysis. Finally, a novel magnetic nanoadsorbent was synthesized by modification the surface of Fe3O4 nanoparticles by N2,N6-di(thiazol-2-yl)pyridine-2,6-dicarboxamide. The prepared magnetic nanoadsorbent was successfully used for removal of Zn2+ and Cd2+ ions from industrial wastes and the effects of the affecting parameters such as pH, possible interfering ions, contact time, concentration of target ions, background electrolytes and temperature were investigated. The maximum adsorption capacities of Zn2+ and Cd2+ were found to be 149.2 and 112.4 mg g−1, respectively. The required times for quantitative removal of Zn2+ and Cd2+ were 30 and 45 min, respectively. Appropriate characteristics of the proposed nanoadsorbent such as high adsorption capacity, stability, reusability, easy synthesis and easy separation, make it suitable adsorbent for practical removal of Zn2+ and Cd2+ ions  from industrial wastes.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

synthesis of amido alkylnaphthols using nano-magnetic particles and surfactants

we used dbsa and nano-magnetic for the synthesis of amido alkylnaphtols.

15 صفحه اول

Amino Functionalized Silica Coated Fe3O4 Magnetic Nanoparticles as a Novel Adsorbent for Removal of Pb2+ and Cd2+

The present study synthesizes a novel adsorbent by coating Fe3O4 magnetic nanoparticles with amino functionalized mesoporous silica. The FTIR spectrums indicate that silica has been successfully coated on the surface of Fe3O4 and 3-aminopropyl tri methoxysilane compound have been grafted to the surface of silica-coated Fe3O4. The XRD analysis shows the presence of magnetite phase with cubic spi...

full text

Synthesis of Novel Magnetic Biochar Using Microwave Heating for Removal of Arsenic from Waste Water

Novel magnetic biochar has been successfully synthesized by using microwave technique, using discarded materials such as Empty Fruit Bunch (EFB). The optimized conditions for the best novel magnetic biochar synthesis are at 900 w reaction power, 20 min reaction time, and impregnation ratio 0.5 (biomas:FeCl3) The details physical and chemical analyses of novel magnetic biochar wer...

full text

Rapid removal of metals from aqueous solution by magnetic nanoadsorbent: A kinetic study

The effective removal of heavy metals from industrial wastewater is the most important issues for many industrialized countries and it is big challenge for human being. This research focuses on understanding adsorption process and developing a cost effective technology for treatment of heavy metals-contaminated industrial wastewater. In this investigation the Fe2O3 magneti...

full text

Rapid removal of metals from aqueous solution by magnetic nanoadsorbent: A kinetic study

The effective removal of heavy metals from industrial wastewater is the most important issues for many industrialized countries and it is big challenge for human being. This research focuses on understanding adsorption process and developing a cost effective technology for treatment of heavy metals-contaminated industrial wastewater. In this investigation the Fe2O3 magneti...

full text

Amino Functionalized Silica Coated Fe3O4 Magnetic Nanoparticles as a Novel Adsorbent for Removal of Pb2+ and Cd2+

The present study synthesizes a novel adsorbent by coating Fe3O4 magnetic nanoparticles with amino functionalized mesoporous silica. The FTIR spectrums indicate that silica has been successfully coated on the surface of Fe3O4 and 3-aminopropyl tri methoxysilane compound have been grafted to the surface of silica-coated Fe3O4. The XRD analysis shows the presence of magnetite phase with cubic spi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 1

pages  17- 31

publication date 2015-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023