Proposing an Intelligent Monitoring System for Early Prediction of Need for Intubation among COVID-19 Hospitalized Patients

Authors

  • Hadi Kazemi-Arpanahi Department of Health Information Technology, Abadan University of Medical Sciences, Abadan, Iran.
  • Mohammad Reza Afrash Department of Medical Informatics, Student Research Committee, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  • Mostafa Shanbehzadeh Department of Health Information Technology, School of Paramedical, Ilam University of Medical Sciences, Ilam, Iran.
  • Raoof Nopour Department of Health Information Management, Student Research Committee, School of Health Management and Information Sciences Branch, Iran University of Medical Sciences, Tehran, Iran.
Abstract:

Introduction: Predicting acute respiratory insufficiency due to coronavirus disease 2019 (COVID-19) can diminish the severe complications and mortality associated with the disease. This study aimed to develop an intelligent system based on machine learning (ML) models for frontline clinicians to effectively triage high-risk patients and prioritize who needs mechanical intubation (MI). Materials and Methods: In this retrospective-design study, the data regarding 482 COVID-19 hospitalized patients from February 9, 2020, to July 20, 2021, was analyzed by six ML classifiers. The most critical clinical variables were identified by a minimal-redundancy-maximal-relevance (mRMR) feature selection technique. In the next step, the models' performance was assessed using confusion matrix criteria and, finally, the best model was adopted. Results: Proposed models were implemented using 23 confirmed variables. Results of comparing six selected ML algorithms indicated the extreme gradient boosting (XGBoost) classifier with 84.7% accuracy, 76.5 % specificity, 90.7% sensitivity, 85.1% f-measure, 87.4% Kappa statistic, and 85.3% for receiver operating characteristic (ROC) had the best performance in the intubation prediction. Conclusion: It is found that ML enables a satisfactory accuracy level in calculating intubation risk in COVID-19 patients. Therefore, using the ML-based intelligent models, notably the XGBoost algorithm, actually enables recognizing high-risk cases and advising correct therapeutic and supportive care by the clinicians.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

an application of fuzzy logic for car insurance underwriting

در ایران بیمه خودرو سهم بزرگی در صنعت بیمه دارد. تعیین حق بیمه مناسب و عادلانه نیازمند طبقه بندی خریداران بیمه نامه براساس خطرات احتمالی آنها است. عوامل ریسکی فراوانی می تواند بر این قیمت گذاری تاثیر بگذارد. طبقه بندی و تعیین میزان تاثیر گذاری هر عامل ریسکی بر قیمت گذاری بیمه خودرو پیچیدگی خاصی دارد. در این پایان نامه سعی در ارائه راهی جدید برای طبقه بندی عوامل ریسکی با استفاده از اصول و روش ها...

فرآیند کنترل در سیستم کامپیوتری تهویه مطبوع ‏‎airwasher environmental control system for intelligent buildings‎‏

در این پایان نامه با استفاده از تکنولوژی روز و امکانات داخل کشور طریقه اتوماسیون سیستم تاسیساتی یک کارخانه نساجی (کارخانه نساجی اطلس پود) همراه با منوهای مربوطه و توضیحات کامل برنامه نویسی و طراحی بلوک های برنامه و سایر قسمتهای برنامه ارائه گشته است. علاوه بر این، برنامه با نمونه آمریکایی آن مقایسه و مزیت های آن نسبت به آمریکایی توضیح داده شده است. همچنین تمامی بلوک های برنامه بصورت شماتیکی بطو...

15 صفحه اول

Design of an Intelligent System for Evaluation of Science Parks

The science parks have important role in development of technology and are able to make economic growth of the countries. The purpose of this paper is the presentation of a Fuzzy Expert System (FIS) as Intelligent Systems to evaluate the science and technology parks. One of the problems for evaluating Science and Technology parks is to have the high number of criteria and science parks which AH...

full text

development and implementation of an optimized control strategy for induction machine in an electric vehicle

in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...

15 صفحه اول

Design and implementation of an intelligent clinical decision support system for diagnosis and prediction of chronic kidney disease

Introduction: Chronic kidney disease (CKD) is one of the most important public health concerns worldwide. The steady increase in the number of people with End-stage renal disease (ESRD) needing a kidney transplant to survive and incur high costs, highlights early diagnosis and treatment of the disease. This study aimed to design a Clinical Decision Support System (CDSS) for diagnosing CKD and p...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 3

pages  1698- 1707

publication date 2022-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023