Preparation and Characterization of Aligned and Random Nanofibrous Nanocomposite Scaffolds of Poly (Vinyl Alcohol), Poly (e-Caprolactone) and Nanohydroxyapatite

Authors

  • A. Doustgani Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, I. R. Iran
  • E. Vasheghani-Farahani Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, I. R. Iran
  • M. Soleimani Department of Hematology, Faculty of Medicine, Tarbiat Modares University, Tehran, I. R. Iran
  • S. Hashemi-Najafabadi Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, I. R. Iran
Abstract:

Nanofibrous scaffolds produced by electrospinning have attracted much attention, recently. Aligned and random nanofibrous scaffolds of poly (vinyl alcohol) (PVA), poly (ε-caprolactone) (PCL) and nanohydroxyapatite  (nHA) were fabricated by electrospinning method in this study. The composite nanofibrous scaffolds were subjected to detailed analysis. Morphological investigations revealed that the prepared nanofibers have uniform morphology and the average fiber diameters of aligned and random scaffolds were 135.5 and 290 nm, respectively. The obtained scaffolds have a porous structure with porosity of 88 and 76 % for random and aligned nanofibers, respectively. Furthermore, FTIR analysis demonstrated that there were strong intramolecular interactions between the molecules of PVA/PCL/nHA. On the other hand, mechanical characterizations show that aligning the nanofibers, could significantly improve the rigidity of the resultant biocomposite nanofibrous scaffolds. The results indicate that aligned scaffolds are suitable for tissue engineering applications.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

preparation and characterization of aligned and random nanofibrous nanocomposite scaffolds of poly (vinyl alcohol), poly (e-caprolactone) and nanohydroxyapatite

nanofibrous scaffolds produced by electrospinning have attracted much attention, recently. aligned and random nanofibrous scaffolds of poly (vinyl alcohol) (pva), poly (ε-caprolactone) (pcl) and nanohydroxyapatite  (nha) were fabricated by electrospinning method in this study. the composite nanofibrous scaffolds were subjected to detailed analysis. morphological investigations revealed that the...

full text

Aligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering

Aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (PCL), poly (vinyl alcohol) (PVA) and hydroxyapatite nanoparticles (nHA). The morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. Scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...

full text

Room Temperature Preparation of Aluminum Hydroxide Nanoparticles and Flame Retardant Poly Vinyl Alcohol Nanocomposite

Al(OH)3 nanoparticles were synthesized by a simple precipitation reaction. The effect of various amines like ethylene diamine, propylene diamine, triethylenetetramine and tetraethylenepentamine as precipitating agents on the morphology of Al(OH)3 nanostructures was investigated. The influence of Al(OH)3 nanoparticles on the flame retardancy of the poly vinyl alcohol (PVA) matrix was studied usi...

full text

aligned and random nanofibrous nanocomposite scaffolds for bone tissue engineering

aligned and random nanocomposite nanofibrous scaffolds were electrospun from polycaprolactone (pcl), poly (vinyl alcohol) (pva) and hydroxyapatite nanoparticles (nha). the morphology and mechanical characteristics of the nanofibers were evaluated using scanning electron microscopy and tensile testing, respectively. scanning electron microscopy revealed fibers with an average diameter of 123 ± 3...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 3

pages  127- 132

publication date 2011-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023