PREDICTIVE MODELS OF THE DOMINANT PERIOD OF SITE USING ARTIFICIAL NEURAL NETWORK AND MICROTREMOR MEASUREMENTS: APPLICATION TO URMIA, IRAN

Authors

  • Gh. Asadzadeh Khoshemehr
  • H. Bahadori
Abstract:

Direct drilling method and the use of microtremor studies are among the most commonly used available methods utilized to estimate dynamic parameters for a site. One of the most important parameters is the dominant period of the site whose estimation plays a pivotal role in seismic hazard mitigation. The conventional models obtained are not capable of estimating the parameters that govern the seismic response of a site. Therefore, Artificial Neural Networks (ANNs) are reliable and practical estimation methods that can be used to analyze comprehensive measurements such as dominant period of a site, and improve the data. In this paper, the performance of ANNs has been investigated on calculation of the dominant period for a site. Three different models, namely BP, RBF and ANFIS, have been compared to determine the best model that provides the most accurate estimation for the dominant period. The input parameters have been chosen to be alluvial layer thickness, grain size, specific gravity, effective stress, shear wave velocity, standard penetration number, Atterberg limits. Each of the three models has been trained and tested for these input parameters and a unique output which is the dominant period of the site. The results showed that ANNs successfully model complex relationships between soil parameters and seismic parameters of the site, and provide a robust tool to accurately estimate the dominant period of a site. The accurate estimations can be then used for engineering applications including damage assessment and structural health monitoring. In addition, The obtained emulator of RBF model shows the least model error in estimation of dominant period and has been found to be superior to the other evaluated methods.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

assessment of the efficiency of s.p.g.c refineries using network dea

data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...

Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...

full text

the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran

آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...

15 صفحه اول

An application of artificial neural network to maintenance management

This study shows the usefulness of Artificial Neural Network (ANN) in maintenance planning and man-agement. An ANN model based on the multi-layer perceptron having three hidden layers and four processing elements per layer was built to predict the expected downtime resulting from a breakdown or a maintenance activity. The model achieved an accuracy of over 70% in predicting the expected downtime.

full text

Availability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models

In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving avera...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 3

pages  395- 410

publication date 2019-06

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023