Prediction of Covid-19 Prevalence and Fatality Rates in Iran Using Long Short-Term Memory Neural Network

Authors

  • Goshvarpour, Ateke PhD Biomedical Engineering, Assistant Professor of Biomedical Engineering, Department of Biomedical Engineering, Imam Reza International University, Mashhad, Razavi Khorasan, Iran
  • Makhloughi, Fatemeh MSc. Student of Biomedical Engineering Bioelectric Orientation, Department of Biomedical Engineering, Imam Reza International University, Mashhad, Razavi Khorasan, Iran
Abstract:

Introduction: The rapid spread of COVID-19 has become a critical threat to the world. So far, millions of people worldwide have been infected with the disease. The Covid-19 pandemic has had significant effects on various aspects of human life. Currently, prediction of the virus's spread is essential in order to be safe and make necessary arrangements. It can help control the rate of its outbreak and deaths. Previous studies have mainly used statistical tools and machine learning-based algorithms. However, the former was inadequate for analyzing unpredictable epidemics, and the latter experienced under-fitting or over-fitting problems. This research has proposed a method based on deep learning on long-term data to overcome these problems. Method: In this cross-sectional analytical study, we presented an approach for predicting the confirmed and death cases of COVID-19 based on long short-term memory (LSTM) networks. The LSTM model was applied to the time series data of Iran between January 22, 2020, and December 14, 2021, and RMSE and MAE evaluation metrics were calculated. Results: The best results of this study were RMSE = 27.57 and MAE = 19.01 for predicting death cases data. The results showed that the LSTM neural network had a good performance in predicting the number of confirmed and death cases of COVID-19 in Iran. Conclusion: The proposed model showed that it was appropriate for modeling and predicting the prevalence of the virus. Estimating the number of confirmed and death cases of COVID-19 can help control the pandemic situation.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the effects of keyword and context methods on pronunciation and receptive/ productive vocabulary of low-intermediate iranian efl learners: short-term and long-term memory in focus

از گذشته تا کنون، تحقیقات بسیاری صورت گرفته است که همگی به گونه ای بر مثمر ثمر بودن استفاده از استراتژی های یادگیری لغت در یک زبان بیگانه اذعان داشته اند. این تحقیق به بررسی تاثیر دو روش مختلف آموزش واژگان انگلیسی (کلیدی و بافتی) بر تلفظ و دانش لغوی فراگیران ایرانی زیر متوسط زبان انگلیسی و بر ماندگاری آن در حافظه می پردازد. به این منظور، تعداد شصت نفر از زبان آموزان ایرانی هشت تا چهارده ساله با...

15 صفحه اول

Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

full text

Short-term prediction of atmospheric concentrations of ground-level ozone in Karaj using artificial neural network

Air pollution is a challenging issue in some of the large cities in developing countries. Air quality monitoring and interpretation of data are two important factors for air quality management in urban areas. Several methods exist to analyze air quality. Among them, we applied the dynamic neural network (TDNN) and Radial Basis Function (RBF) methods to predict the concentrations of ground-level...

full text

Short-term Prediction of Tehran Stock Exchange Price Index (TEPIX): Using Artificial Neural Network (ANN)

The main objective of this study is to find out whether an Artificial Neural Network (ANN) will be useful to predict stock market price, which is highly non-linear and uncertain. Specifically, this study will focus on forecasting TSE Price Index (TEPIX) as the most significant index of Iran Stock Market. Many data have been used as inputs to the network. These data are observations of 2000 day...

full text

Demographic science aids in understanding the spread and fatality rates of COVID-19

Governments around the world must rapidly mobilize and make difficult policy decisions to mitigate the coronavirus disease 2019 (COVID-19) pandemic. Because deaths have been concentrated at older ages, we highlight the important role of demography, particularly, how the age structure of a population may help explain differences in fatality rates across countries and how transmission unfolds. We...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 1

pages  27- 39

publication date 2022-06

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023