Prediction of Cohesive Sediment Erosion Rate and Analyzing the Effective Parameters Using Artificial Neural Network
Authors
Abstract:
Transferring mechanic of cohesive sediments are different from non-cohesive sediments. For determining the erosion rate of non-cohesive sediments, physical parameters such as average diameter and density are used, such as average diameter and density. Due to the nature of the cohesive sediments, their erosion rates are determined interrelated with the shear stress of the bed with fixed coefficients related to the characteristics of each sediment. In this study, experimental results on the cohesive sediments of the Loire estuary of France has been used. After validating the results in Mike software, experimental data were developed to study the erosion of sediment with more data and different hydraulic conditions. In the following, due to the number of various parameters affecting the sediment erosion phenomenon, a neural network was used to analyze the data. The parameters used in the model include flow components, sediment and fluid characteristics. Due to the better performance of the neural network, these data were used for dimensionless data. The correlation coefficient and mean absolute error of data in the neural network were 0.98 and 0.0036, respectively, which indicated the proper performance of the network. Finally, after performing the sensitivity analysis, the and parameters were introduced as the most effective parameters for increasing and decreasing erosion rates, respectively.
similar resources
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Prediction of ultimate strength of shale using artificial neural network
A rock failure criterion is very important for prediction of the ultimate strength in rock mechanics and geotechnics; it is determined for rock mechanics studies in mining, civil, and oil wellborn drilling operations. Also shales are among the most difficult to treat formations. Therefore, in this research work, using the artificial neural network (ANN), a model was built to predict the ultimat...
full textPrediction of Cardiovascular Diseases Using an Optimized Artificial Neural Network
Introduction: It is of utmost importance to predict cardiovascular diseases correctly. Therefore, it is necessary to utilize those models with a minimum error rate and maximum reliability. This study aimed to combine an artificial neural network with the genetic algorithm to assess patients with myocardial infarction and congestive heart failure. Materials & Methods: This study utilized a m...
full textPrediction of Egg Production Using Artificial Neural Network
Artificial neural networks (ANN) have shown to be a powerful tool for system modeling in a wide range of applications. The focus of this study is on neural network applications to data analysis in egg production. An ANN model with two hidden layers, trained with a back propagation algorithm, successfully learned the relationship between the input (age of hen) and output (egg production) variabl...
full textSurface Tension Prediction of Hydrocarbon Mixtures Using Artificial Neural Network
In this study, artificial neural network was used to predict the surface tension of 20 hydrocarbon mixtures. Experimental data was divided into two parts (70% for training and 30% for testing). Optimal configuration of the network was obtained with minimization of prediction error on testing data. The accuracy of our proposed model was compared with four well-known empirical equations. The arti...
full textPrediction of the Weight and Number of Eggs in Mazandaran Native Fowl Using Artificial Neural Network
Traditional poultry production has changed to a considerable industry after few decades. Now, poultry industry is one of the main sectors to obtain the required protein for human consumption. Prediction of the weight and number of eggs according to economic traits can improve the efficiency of production and the profit of producers. In present study, the weight and number of eggs in Mazandaran ...
full textMy Resources
Journal title
volume 14 issue 48
pages 68- 78
publication date 2020-03
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023