Prediction of Breast Tumor Malignancy Using Neural Network and Whale Optimization Algorithms (WOA)

Authors

  • Alizadeh, Kamal Department of Chemistry, Faculty of Basic Science, Lorestan University, Khorramabad, Iran
  • Sharifi, Ali Ph.D. Student in Analytical Chemistry, Department of Chemistry, Lorestan University, Khorramabad, Iran
Abstract:

Introduction: Breast cancer is the most prevalent cause of cancer mortality among women. Early diagnosis of breast cancer gives patients greater survival time. The present study aims to provide an algorithm for more accurate prediction and more effective decision-making in the treatment of patients with breast cancer. Methods: The present study was applied, descriptive-analytical, based on the use of computerized methods. We obtained 699 independent records containing nine clinical variables from the UCI machine learning. The EM algorithm was used to analyze the data before normalizing them. Following that, a combination of neural network model based on multilayer perceptron structure with the Whale Optimization Algorithm (WOA) was used to predict the breast tumor malignancy. Results: After preprocessing the disease data set and reducing data dimensions, the accuracy of the proposed algorithm for training and testing data was 99.6% and 99%, respectively. The prediction accuracy of the proposed model was 99.4%, which would be a satisfying result compared to different methods of machine learning in other studies. Conclusion: Considering the importance of early diagnosis of breast cancer, the results of this study may have highly useful implications for health care providers and planners so as to achieve the early diagnosis of the disease.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Early Prediction of Gestational Diabetes Using ‎Decision Tree and Artificial Neural Network Algorithms

Introduction: Gestational diabetes is associated with many short-term and long-term complications in mothers and newborns; hence, the detection of its risk factors can contribute to the timely diagnosis and prevention of relevant complications. The present study aimed to design and compare Gestational diabetes mellitus (GDM) prediction models using artificial intelligence algorithms. Materials ...

full text

Optimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network

Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...

full text

Prediction and optimization of load and torque in ring rolling process through development of artificial neural network and evolutionary algorithms

Developing artificial neural network (ANN), a model to make a correct prediction of required force and torque in ring rolling process is developed for the first time. Moreover, an optimal state of process for specific range of input parameters is obtained using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) methods. Radii of main roll and mandrel, rotational speed of main roll, pr...

full text

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 3

pages  26- 35

publication date 2019-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023