Prediction and Diagnosis of Diabetes Mellitus using a Water Wave Optimization Algorithm
Authors
Abstract:
Data mining is an appropriate way to discover information and hidden patterns in large amounts of data, where the hidden patterns cannot be easily discovered in normal ways. One of the most interesting applications of data mining is the discovery of diseases and disease patterns through investigating patients' records. Early diagnosis of diabetes can reduce the effects of this devastating disease. A common way to diagnose this disease is performing a blood test, which, despite its high precision, has some disadvantages such as: pain, cost, patient stress, lack of access to a laboratory, and so on. Diabetic patients’ information has hidden patterns, which can help you investigate the risk of diabetes in individuals, without performing any blood tests. Use of neural networks, as powerful data mining tools, is an appropriate method to discover hidden patterns in diabetic patients’ information. In this paper, in order to discover the hidden patterns and diagnose diabetes, a water wave optimization(WWO) algorithm; as a precise metaheuristic algorithm, was used along with a neural network to increase the precision of diabetes prediction. The results of our implementation in the MATLAB programming environment, using the dataset related to diabetes, indicated that the proposed method diagnosed diabetes at a precision of 94.73%,sensitivity of 94.20%, specificity of 93.34%, and accuracy of 95.46%, and was more sensitive than methods such as: support vector machines, artificial neural networks, and decision trees.
similar resources
Diagnosis of Diabetes Using a Random Forest Algorithm
Background: Diabetes is the fourth leading cause of death in the world. And because so many people around the world have the disease, or are at risk for it, diabetes can be called the disease of the century. Diabetes has devastating effects on the health of people in the community and if diagnosed late, it can cause irreparable damage to vision, kidneys, heart, arteries and so on. Therefore, it...
full textsimulation and experimental studies for prediction mineral scale formation in oil field during mixing of injection and formation water
abstract: mineral scaling in oil and gas production equipment is one of the most important problem that occurs while water injection and it has been recognized to be a major operational problem. the incompatibility between injected and formation waters may result in inorganic scale precipitation in the equipment and reservoir and then reduction of oil production rate and water injection rate. ...
A Fuzzy Expert System & Neuro-Fuzzy System Using Soft Computing For Gestational Diabetes Mellitus Diagnosis
Gestational diabetes mellitus (GDM) is a kind of diabetes that requires persistent medical care in patient self management education to prevent acute complications. One of the common and main problems in diagnosis of the diabetes is the weakness in its initial stages of the illness. This paper intends to propose an expert system in order to diagnose the risk of GDM by using FIS model. The knowl...
full textA Fuzzy Expert System & Neuro-Fuzzy System Using Soft Computing For Gestational Diabetes Mellitus Diagnosis
Gestational diabetes mellitus (GDM) is a kind of diabetes that requires persistent medical care in patient self management education to prevent acute complications. One of the common and main problems in diagnosis of the diabetes is the weakness in its initial stages of the illness. This paper intends to propose an expert system in order to diagnose the risk of GDM by using FIS model. The knowl...
full textMy Resources
Journal title
volume 7 issue 4
pages 617- 630
publication date 2019-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023