Predicting the Risk of Osteoporosis Using Decision Tree and Neural Network
Authors
Abstract:
Introduction: Osteoporosis is one of the major causes of disability and death in elderly people. The objective of this study was to determine the factors affecting the incidence of osteoporosis and provide a predictive model to accelerate diagnosis and reduce costs. Method: In this fundamental descriptive study, a new model was proposed to identify the factors affecting osteoporosis. Data related to 4083 women were investigated with Clementine12, the data mining tool, to discover knowledge. Using data mining algorithms, including decision tree and artificial neural network, some rules were extracted that can be used as a model to predict the condition of patients and finally, the accuracy of the proposed models were compared. Results: This study examined several models on a number of different characteristics and compared the results in terms of accuracy to find the best predictive model. The classification accuracy of the MLP neural network model was 92.14% which was higher than that of the other algorithms used in this study. According to the identification of factors affecting osteoporosis, the risk of developing this disease can be predicted for a new sample. Conclusion: Healthcare organizations are always gathering a lot of information while this data is not used properly. This study showed that the hidden patterns and relationships in this data can be discovered and used to improve the quality of diagnostic and treatment services.
similar resources
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Early Prediction of Gestational Diabetes Using Decision Tree and Artificial Neural Network Algorithms
Introduction: Gestational diabetes is associated with many short-term and long-term complications in mothers and newborns; hence, the detection of its risk factors can contribute to the timely diagnosis and prevention of relevant complications. The present study aimed to design and compare Gestational diabetes mellitus (GDM) prediction models using artificial intelligence algorithms. Materials ...
full textassessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
Comparison of gestational diabetes prediction with artificial neural network and decision tree models
Background: Gestational diabetes mellitus (GDM) is one of the most common metabolic disorders in pregnancy, which is associated with serious complications. In the event of early diagnosis of this disease, some of the maternal and fetal complications can be prevented. The aim of this study was to early predict gestational diabetes mellitus by two statistical models including artificial neural ne...
full textPredicting the coefficients of the Daubert and Danner correlation using a neural network model
In the present research, three different architectures were investigated to predict the coefficients of the Daubert and Danner equation for calculation of saturated liquid density. The first architecture with 4 network input parameters including critical temperature, critical pressure, critical volume and molecular weight, the second architecture with 6 network input parameters including the on...
full textMy Resources
Journal title
volume 7 issue 3
pages 304- 317
publication date 2020-12
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023