POWERSET OPERATORS OF EXTENSIONAL FUZZY SETS

author

  • J. Mockor University of Ostrava, Institute for Research and Applications of Fuzzy Modeling, 30. dubna 22, 701 03 Ostrava 1, Czech Republic
Abstract:

Powerset structures of extensional fuzzy sets in sets with similarity relations are investigated. It is proved that extensional fuzzy sets have powerset structures which are powerset theories in the category of sets with similarity relations, and some of these powerset theories are defined also by algebraic theories (monads). Between Zadeh's fuzzy powerset theory and the classical powerset theory there exists a strong relation, which can be represented as a homomorphism. Analogical results are also proved for new powerset theories of extensional fuzzy sets.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ALGEBRAIC GENERATIONS OF SOME FUZZY POWERSET OPERATORS

In this paper, let $L$ be a completeresiduated lattice, and let {bf Set} denote the category of setsand mappings, $LF$-{bf Pos} denote the category of $LF$-posets and$LF$-monotone mappings, and $LF$-{bf CSLat}$(sqcup)$, $LF$-{bfCSLat}$(sqcap)$ denote the category of $LF$-completelattices and $LF$-join-preserving mappings and the category of$LF$-complete lattices and $LF$-meet-preserving mapping...

full text

algebraic generations of some fuzzy powerset operators

in this paper, let $l$ be a completeresiduated lattice, and let {bf set} denote the category of setsand mappings, $lf$-{bf pos} denote the category of $lf$-posets and$lf$-monotone mappings, and $lf$-{bf cslat}$(sqcup)$, $lf$-{bfcslat}$(sqcap)$ denote the category of $lf$-completelattices and $lf$-join-preserving mappings and the category of$lf$-complete lattices and $lf$-meet-preserving mapping...

full text

some properties of fuzzy hilbert spaces and norm of operators

in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...

15 صفحه اول

Partially continuous pretopological and topological operators for intuitionistic fuzzy sets

In this paper, pretopological and topological operators are introduced based on partially continuous linear transformations of the membership and non-membership functions for intuitionistic fuzzy sets. They turn out to be a generalization of the topological operators for intuitionistic fuzzy sets.On the other hand it is a generalization of the fuzzy set pretopological operators introduced...

full text

POWERSET OPERATOR FOUNDATIONS FOR CATALG FUZZY SET THEORIES

The paper sets forth in detail categorically-algebraic or catalg foundations for the operations of taking the image and preimage of (fuzzy) sets called forward and backward powerset operators. Motivated by an open question of S. E. Rodabaugh, we construct a monad on the category of sets, the algebras of which generate the fixed-basis forward powerset operator of L. A. Zadeh. On the next step, w...

full text

A NOVEL TRIANGULAR INTERVAL TYPE-2 INTUITIONISTIC FUZZY SETS AND THEIR AGGREGATION OPERATORS

The objective of this work is to present a triangular interval type-2 (TIT2) intuitionistic fuzzy sets and their corresponding aggregation operators, namely, TIT2 intuitionistic fuzzy weighted averaging, TIT2 intuitionistic fuzzy ordered weighted averaging and TIT2 intuitionistic fuzzy hybrid averaging based on Frank norm operation laws. Furthermore, based on these operators, an approach to mul...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 15  issue 2

pages  143- 163

publication date 2018-04-29

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023