Physical and theoretical modeling of rock slopes against block-flexure toppling failure
Authors
Abstract:
Block-flexure is the most common mode of toppling failure in natural and excavated rock slopes. In such failure, some rock blocks break due to tensile stresses and some overturn under their own weights and then all of them topple together. In this paper, first, a brief review of previous studies on toppling failures is presented. Then, the physical and mechanical properties of experimental modeling materials are summarized. Next, the physical modeling results of rock slopes with the potential of block-flexural toppling failures are explained and a new analytical solution is proposed for the stability analysis of such slopes. The results of this method are compared with the outcomes of the experiments. The comparative studies show that the proposed analytical approach is appropriate for the stability analysis of rock slopes against block-flexure toppling failure. Finally, a real case study is used for the practical verification of the suggested method.
similar resources
physical and theoretical modeling of rock slopes against block-flexure toppling failure
block-flexure is the most common mode of toppling failure in natural and excavated rock slopes. in such failure, some rock blocks break due to tensile stresses and some overturn under their own weights and then all of them topple together. in this paper, first, a brief review of previous studies on toppling failures is presented. then, the physical and mechanical properties of experimental mode...
full textNumerical Modeling of Rock Slopes with a Potential of Block-Flexural Toppling Failure
One of the most important instabilities of rock slopes is toppling failure. Among the types of toppling failure, block-flexural failures are more common instability which occurs in nature. In this failure, some rock blocks break because of tensile stresses, and some overturn under their weights, and next to all of them topple together. Physical and theoretical modeling of this failure is studie...
full textFlexural Toppling Failure in Rock Slopes: From Theory to Applications
Toppling failure is one of the most common modes of failure of rock slopes in layered rock strata. Flexural toppling is one of the well-known modes of the failure. This type of failure occurs due to bending stress. In this article, a brief yet comprehensive review of toppling failure is presented. Firstly, the conditions and general mechanism of the failure are described. Then, experimental, th...
full textflexural toppling failure in rock slopes: from theory to applications
toppling failure is one of the most common modes of failure of rock slopes in layered rock strata. flexural toppling is one of the well-known modes of the failure. this type of failure occurs due to bending stress. in this article, a brief yet comprehensive review of toppling failure is presented. firstly, the conditions and general mechanism of the failure are described. then, experimental, th...
full textNumerical analysis of slide-head-toppling failure
In layered and blocky rock slopes, toppling failure is a common mode of instability that may occur in mining engineering. If this type of slope failure occurs as a consequence of another type of failure, it is referred to as the secondary toppling failure. “Slide-head-toppling” is a type of secondary toppling failures, where the upper part of the slope is toppled as a consequence of a semi-circ...
full textStability analysis of block-flexural toppling of rock blocks with round edges
One of the most conventional toppling instabilities is the block-flexural toppling failure that occurs in civil and mining engineering projects. In this kind of failure, some rock columns are broken due to tensile bending stresses, and the others are overturned due to their weights, and finally, all of the blocks topple together. A specific feature of spheroidal weathering is the rounding of th...
full textMy Resources
Journal title
volume 49 issue 2
pages 155- 171
publication date 2015-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023