Optimization of photo-degradation of direct blue 258 using nano Titanium Oxide with response surface method

Authors: not saved
Abstract:

The photodegradation of Direct Blue 258, a member of the group of azo dyes which are commonly used in the various branches of the industry, was studied. The photostability of this dye was not previously surveyed. Photocatalytic degradation method was evaluated. The both light source include solar simulated (UV 400 W lamp) and sun light (E= 400 W/m2) and titanium dioxide nanoparticles were used as irradiation sources and photocatalysts, respectively. Several factors such as reaction time, pH and nano-TiO2 concentration and UV source were investigated. Using a 24 factorial matrix, the pH and the nano-TiO2 concentration are the main parameters influencing the degradation rate of DB258. Subsequently, a central composite design methodology has been investigated to determine the optimal experimental parameters for DB258 degradation. After only 30 min of treatment time, high removal of DB258 was achieved by the photo catalyst process under day light (96 %) compared to the UV 400 W lamp. The day light and UV 400 W lamp applied under optimal operating conditions (at 30 min, 0.5 g/L nano-TiO2 and under pH 7) is capable to degrade around 96 % and 96.4 % of DB258, respectively. Since, UV source is not only hazardous but also expensive because of large input of electric power to generate UV irradiation. According to the results, sunlight assisted nano-TiO2 could be effectively used for photocatalytic degradation of pollutants in wastewater.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Response surface methodology for optimization of Phenol photo-catalytic degradation using Carbon-doped TiO2 nano-photocatalyst

In this research, Carbon-doped TiO2 nano-photocatalyst is synthesized via sol-gel technique and photo-catalytic degradation of phenol has been studied under ultraviolet and visible light irradiation in a fluidized bed reactor. Various techniques are used to characterize TiO2 nano-photocatalyst such as X-Ray Diffraction, Fourier transform infrared spectroscopy,  Energy Disp...

full text

Response surface methodology for optimization of Phenol photo-catalytic degradation using Carbon-doped TiO2 nano-photocatalyst

In this research, Carbon-doped TiO2 nano-photocatalyst is synthesized via sol-gel technique and photo-catalytic degradation of phenol has been studied under ultraviolet and visible light irradiation in a fluidized bed reactor. Various techniques are used to characterize TiO2 nano-photocatalyst such as X-Ray Diffraction, Fourier transform infrared spectroscopy,  Energy Disp...

full text

Response surface method Optimization of the Dyes Degradation using Zero-Valent Iron based Bimetallic Nanoparticle on the Bentonite Clay Surface

Immobilizing of zero-valent iron in mono- and bi-metallic systems on the bentonite clay surface as new nanocatalyst were synthesized and used to degrade model acidic dyes from aqueous media. The Fourier-transform infrared spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, and Brunauer-Emmett-Teller analysis were ...

full text

Optimization of Moving Wingin Ground Effect using Response Surface Method

Optimization of the sectional wing in ground effect (WIG) has been studied using ahigh order numerical procedure and response surface method (RSM). Initially, the effects of the ground clearance, angle of attack, thickness, and camber of wing have been investigated by a high-resolutionscheme, which is highlystrong and accurate. In the numerical simulation, Normalized Variable Diagram (NVD) sche...

full text

Optimization and kinetic evaluation of acid blue 193 degradation by UV/peroxydisulfate oxidation using response surface methodology

The optimization of process conditions for the degradation of Acid Blue 193 by UV/peroxydisulfate was investigated using response surface methodology (RSM). The effects of four parameters namely initial K2S2O8 concentration, UV irradiation, temperature, and initial dye concentration on two process responses, color removal and the rate constants of the first-order kinetic equations, were investi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  5- 12

publication date 2017-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023