On trivial ends of Cayley graph of groups

Authors

  • A. Babaee Asistant professor, Department of Pure Mathematics, Ferdowsi university of Mashhad, Mashhad, Iran
  • H. Mirebrahimi Asistant professor, Department of Pure Mathematics, Ferdowsi university of Mashhad, Mashhad, Iran
Abstract:

‎In this paper, first we introduce the end of locally finite graphs as an equivalence class of infinite paths in the graph. Then we mention the ends of finitely generated groups using the Cayley graph. It was proved that the number of ends of groups are not depended on the Cayley graph and that the number of ends in the groups is equal to zero, one, two, or infinity. For each of these numbers, some results have been obtained in the structure of groups, the most well-known of which is Stallings theorem providing the structure of groups with more one ends as the amalgamated free product or HNN extension. Specifically, it was proved that group with exactly two ends is a virtually Z group. After that, we introduce the trivial end of the graphs and show that the trivial end is exactly the same as the special type of infinite path. Finally, we prove that the existence of trivial end for Cayley graph of a group is equivalent to being a free group, and this implies that the Cayley graph of a group has a trivial end if and only if all of its ends are trivial.  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Finite groups admitting a connected cubic integral bi-Cayley graph

A graph   is called integral if all eigenvalues of its adjacency matrix  are integers.  Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$.  In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.

full text

dynamic coloring of graph

در این پایان نامه رنگ آمیزی دینامیکی یک گراف را بیان و مطالعه می کنیم. یک –kرنگ آمیزی سره ی رأسی گراف g را رنگ آمیزی دینامیکی می نامند اگر در همسایه های هر رأس v?v(g) با درجه ی حداقل 2، حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k، به طوری که g دارای –kرنگ آمیزی دینامیکی باشد را عدد رنگی دینامیکی g می نامند و آنرا با نماد ?_2 (g) نمایش می دهند. مونت گمری حدس زده است که تمام گراف های منتظم ...

15 صفحه اول

Eigenvalues of the Cayley Graph of Some Groups with respect to a Normal Subset

‎‎Set X = { M11‎, ‎M12‎, ‎M22‎, ‎M23‎, ‎M24‎, ‎Zn‎, ‎T4n‎, ‎SD8n‎, ‎Sz(q)‎, ‎G2(q)‎, ‎V8n}‎, where M11‎, M12‎, M22‎, ‎M23‎, ‎M24 are Mathieu groups and Zn‎, T4n‎, SD8n‎, ‎Sz(q)‎, G2(q) and V8n denote the cyclic‎, ‎dicyclic‎, ‎semi-dihedral‎, ‎Suzuki‎, ‎Ree and a group of order 8n presented by                                      V8n = < a‎, ‎b | a^{2n} = b^{4} = e‎, ‎ aba = b^{-1}‎, ‎ab^{...

full text

On the eigenvalues of Cayley graphs on generalized dihedral groups

‎Let $Gamma$ be a graph with adjacency eigenvalues $lambda_1leqlambda_2leqldotsleqlambda_n$‎. ‎Then the energy of‎ ‎$Gamma$‎, ‎a concept defined in 1978 by Gutman‎, ‎is defined as $mathcal{E}(G)=sum_{i=1}^n|lambda_i|$‎. ‎Also‎ ‎the Estrada index of $Gamma$‎, ‎which is defined in 2000 by Ernesto Estrada‎, ‎is defined as $EE(Gamma)=sum_{i=1}^ne^{lambda_i}$‎. ‎In this paper‎, ‎we compute the eigen...

full text

ON THE NORMALITY OF t-CAYLEY HYPERGRAPHS OF ABELIAN GROUPS

A t-Cayley hypergraph X = t-Cay(G; S) is called normal for a finite group G, if the right regular representationR(G) of G is normal in the full automorphism group Aut(X) of X. In this paper, we investigate the normality of t-Cayley hypergraphs of abelian groups, where S < 4.

full text

Characteristics of Common Neighborhood Graph under Graph Operations and on Cayley Graphs

Let G(V;E) be a graph. The common neighborhood graph (congraph) of G is a graph with vertex set V , in which two vertices are adjacent if and only if they have a common neighbor in G. In this paper, we obtain characteristics of congraphs under graph operations; Graph :::::union:::::, Graph cartesian product, Graph tensor product, and Graph join, and relations between Cayley graphs and its c...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 16

pages  69- 78

publication date 2019-02-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023