Numerical study of fluid flow and heat transfer in a gas-tank water heater

Authors

  • Mohammad Hossein Tavakoli Physics Department, Bu-Ali Sina University, Hamedan, Iran
Abstract:

Influence of a vent hood at the exit of exhaust flue gas and flue baffles in the firetube on the temperature and flow fields of a gas tank water heater, as well as thestructure and amount of heat transferred to the water tank has been studiednumerically using two-dimensional steady state finite element simulation.Observations show that without a vent hood, there is a downward gas flow in theflue and a strong vortex in the lower burner chamber. Using a vent hood preventsthe gas back flow into the flue, and placing the flue baffles increases the heatdelivered to the water

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

numerical study of fluid flow and heat transfer in a gas-tank water heater

influence of a vent hood at the exit of exhaust flue gas and flue baffles in the firetube on the temperature and flow fields of a gas tank water heater, as well as thestructure and amount of heat transferred to the water tank has been studiednumerically using two-dimensional steady state finite element simulation.observations show that without a vent hood, there is a downward gas flow in theflu...

full text

Experimental and Numerical Analysis of Flow and Heat Transfer in a Gas-Liquid Thermosyphon Heat Exchanger in a Pilot Plant

A numerical and experimental investigation of flow and heat transfer in a gas- liquid Thermosyphon Heat Exchanger "THE" with built in heat pipes and aluminum plate fins for moderate Reynolds numbers has been carried out. It's module is composed of 6 rows and 15 columns copper pipes with aluminum plate fins with dimensions of 130cm height, 47cm width and  20cm depth. The tubes have been fill...

full text

Numerical investigation of heat transfer and laminar Water-Al2O3 ‎nanofluid flow in a rectangular Rib-Microchannel

در تحقیق حاضر در مورد اثرات ارتفاع دندانه در میکروکانال دندانه‌دار دو بعدی، بر روی پارامترهای انتقال حرارت و دینامیک سیالات محاسباتی جریان آرام نانوسیال آب-اکسید آلومینیم است. بررسی‌های این تحقیق به صورت عددی با نرم افزار تجاری فلوئنت3/6 برای اعداد رینولدز10 و 100، برای چهار حالت مختلف ارتفاع دندانه انجام شده است. افزایش ارتفاع دندانه‌های داخلی یا مغشوشگرهای جریان، عملکرد انتقال حرارت جابجایی د...

full text

Fluid flow and heat transfer characteristics in a curved rectangular duct using Al2O3-water nanofluid

In the present research, the laminar forced convective heat transfer and fluid flow characteristics for Al2O3-water nanofluid flowing in different bend (i.e., 180o and 90o) pipes have been investigated numerically in a three-dimensional computational domain using the finite volume technique. The effects of different pertinent parameters, such as the Reynolds number of the duct, volume fraction ...

full text

Investigation of fluid flow and heat transfer in tube hot metal gas forming process

In this study, hot metal gas forming process of AA6063aluminumtubeis studied with a focus on heat transfer of both fluid and solid phases numerically. An experimental study is simultaneously conducted to validate the numerical method. Some of the most important outputs of the present study, are velocity distribution of fluid inside the tube as well as the fluid in the gap between tube and matri...

full text

Fluid Flow and Heat Transfer of Nanofluids over a Flat Plate with Conjugate Heat Transfer

The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate) and forced convection of a non-homogeneous nanofluid flow (over a flat plate) ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 1

pages  21- 29

publication date 2015-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023