Numerical study of flow and heat transfer characteristics of CuO/H2O nanofluid within a mini tube
Authors
Abstract:
Nanofluids are new heat transfer fluids, which improve thermal performance while reducing the size of systems. In this study, the numerical domain as a three-dimensional copper mini tube was simulated to study the characteristics of flow and heat transfer of CuO/H2O nanofluid, flowed horizontally within it. The selected model for this study was a two-phase mixture model. The results indicated that nanofluids with the platelet nanoparticles have better thermal performance than other shapes of nanoparticles such as cylindrical, Blade, Brick, and spherical nanoparticles, respectively. By studying the flow characteristics, it was found that the pressure drop and friction factor of the nanofluids are dependent on the shape of the nanoparticles so that the nanofluids containing spherical nanoparticles have the lowest reduction in the friction factor and nanofluids containing platelet-shaped nanoparticles have the highest reduction in friction factor. Furthermore, as new formulas, two correlations were suggested to calculate the Nusselt number of nanofluids according to the effect of nanoparticle shape on the laminar and turbulent flow regimes.
similar resources
Numerical Comparison of Turbulent Heat Transfer and Flow Characteristics of SiO2/Water Nanofluid within Helically Corrugated Tubes and Plain Tube
Turbulent heat transfer in Helically Corrugated Tubes (HCT) was numerically investigated for pure water and SiO2 nanofluid using Computational Fluid Dynamics (CFD). This study was carried out for different corrugating pitches (5, 7, 8 mm) and heights (0.5, 0.75, 1.25 mm) at various Reynolds numbers ranging from 5000 to 13300. The effect of nanoparticles on heat transfer augmentation for plain t...
full textNumerical investigation of heat transfer and laminar Water-Al2O3 nanofluid flow in a rectangular Rib-Microchannel
در تحقیق حاضر در مورد اثرات ارتفاع دندانه در میکروکانال دندانهدار دو بعدی، بر روی پارامترهای انتقال حرارت و دینامیک سیالات محاسباتی جریان آرام نانوسیال آب-اکسید آلومینیم است. بررسیهای این تحقیق به صورت عددی با نرم افزار تجاری فلوئنت3/6 برای اعداد رینولدز10 و 100، برای چهار حالت مختلف ارتفاع دندانه انجام شده است. افزایش ارتفاع دندانههای داخلی یا مغشوشگرهای جریان، عملکرد انتقال حرارت جابجایی د...
full textConvective Heat Transfer of Oil Based Nanofluid Flow Inside a Circular Tube
Abstract An empirical investigation was carried out to study convective heat transfer of nanofluid flow inside an inclined copper tube under uniform heat flux condition. Required data are acquired for laminar and hydrodynamically fully developed flow inside round tube. The stable CuO-base oil nanofluid with different nanoparticle weight fractions of 0.5%, 1% and 2% was produced by means of ul...
full textExperimental investigation on the heat transfer performance and pressure drop characteristics of γ-Al2O3/water nanofluid in a double tube counter flow heat exchanger
In this paper, overall heat transfer coefficient and friction factor of water based γ-Al2O3 nanofluid in a double tube counter flow heat exchanger have been measured experimentally under turbulent flow condition. For better dispersion of γ-Al2O3 nanoparticles in distilled water, magnetic stirrer and ultrasonic vibrator (with a power of 240 kW and frequency of 35 kHz) were implemented. The stabi...
full textFluid flow and heat transfer characteristics in a curved rectangular duct using Al2O3-water nanofluid
In the present research, the laminar forced convective heat transfer and fluid flow characteristics for Al2O3-water nanofluid flowing in different bend (i.e., 180o and 90o) pipes have been investigated numerically in a three-dimensional computational domain using the finite volume technique. The effects of different pertinent parameters, such as the Reynolds number of the duct, volume fraction ...
full textNumerical Study of Flow and Heat Transfer in a Square Driven Cavity
A numerical approach called “SIMPLER” is used to investigate the flow and heat transfer characteristics in a square driven cavity. The two-dimensional incompressible Navier-Stokes equations were solved and the results are depicted as contour plots of stream function, vorticity, and total pressure for Reynolds numbers from 1 to 10000. At the higher values of Reynolds number, an inviscid core re...
full textMy Resources
Journal title
volume 6 issue 1
pages 11- 20
publication date 2019-05-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023