Numerical solution of the system of Volterra integral equations of the first kind

Authors

  • A. Armand Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
  • Z. Gouyandeh Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
Abstract:

This paper presents a comparison between variational iteration method (VIM) and modfied variational iteration method (MVIM) for approximate solution a system of Volterra integral equation of the first kind. We convert a system of Volterra integral equations to a system of Volterra integro-di®erential equations that use VIM and MVIM to approximate solution of this system and hence obtain an approximation for system of Volterra integral equations. Some examples are given to show the pertinent features of this methods.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types

بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی ‎‏بیان شد‎‎‏ه اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...

15 صفحه اول

numerical solution of the system of volterra integral equations of the first kind

this paper presents a comparison between variational iteration method (vim) and modfied variational iteration method (mvim) for approximate solution a system of volterra integral equation of the first kind. we convert a system of volterra integral equations to a system of volterra integro-di®erential equations that use vim and mvim to approximate solution of this system and hence obtain an appr...

full text

Numerical solution of two-dimensional integral equations of the first kind by multi-step methods

‎‎‎In this paper‎, ‎we develop multi-step methods to solve a class of two-dimensional nonlinear Volterra integral equations (2D-NVIEs) of the first kind‎. ‎Here‎, ‎we convert a 2D-NVIE of the first kind to a one-dimensional linear VIE of the first kind and then we solve the resulted equation numerically by multi-step methods‎. ‎We also verify convergence and error analysis of the method‎. ‎At t...

full text

A solution for Volterra Integral Equations of the First Kind Based on Bernstein Polynomials

In this paper, we present a new computational method to solve Volterra integral equations of the first kind based on Bernstein polynomials. In this method, using operational matrices turn the integral equation into a system of equations. The computed operational matrices are exact and new. The comparisons show this method is acceptable. Moreover, the stability of the proposed method is studied.

full text

APPLICATION OF FUZZY EXPANSION METHODS FOR SOLVING FUZZY FREDHOLM- VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND

In this paper we intend to offer new numerical methods to solvethe fuzzy Fredholm- Volterra integral equations of the firstkind $(FVFIE-1)$. Some examples are investigated to verify convergence results and to illustrate the efficiently of the methods.  

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  27- 35

publication date 2014-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023