Numerical method for a system of second order singularly perturbed turning point problems

Authors

Abstract:

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on this mesh. An error estimate is derived by using supremum norm which is $O(N^{-1}(ln N)^2)$. Numerical examples are given to validate theoretical results.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

numerical method for a system of second order singularly perturbed turning point problems

in this paper, a parameter uniform numerical method based on shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. it is assumed that both equations have a turning point at the same point. an appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

full text

An efficient numerical method for singularly perturbed second order ordinary differential equation

In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...

full text

Fitted mesh numerical method for singularly perturbed delay differential turning point problems exhibiting boundary layers

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opin...

full text

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

full text

an efficient numerical method for singularly perturbed second order ordinary differential equation

in this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. a fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. thomas algorithm is used to solve the tri-diagonal system. the stability of the algorithm is investigated. it ...

full text

On the Numerical Solution for Singularly Perturbed Second-order ODEs

In this article we consider the approximation of singularly perturbed boundary value problems using a local adaptive grid h-refinement for finite element method, the variation iteration method and the homotopy perturbation method. The solution to such problems contains boundary layers which overlap and interact and the numerical approximation must take this into account in order for the resulti...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 2

pages  211- 232

publication date 2016-11-25

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023