Novel modified magnetic mesopouros silica for rapid and efficient removal of methylene blue dye from aqueous media
Authors
Abstract:
This reaserch aims at functionalizing magnetic mesoporous silica with methacrylic acid-3-aminopropyltriethoxysilane (Fe3O4@MCM-41@MAA-APTES) applied for removal of methylene blue from aqueous solution. Several variables (such as pH, dye concentration, adsorbent amount and contact time) have been investigated. Under optimum conditions, maximum capacity of 87.71 mg g-1 of MB was obtained for the sorbent. The magnetic mesoporous silica was characterized by SEM, FT-IR, XRD and VSM analyses. The adsorption isotherms were also studied for the sorbent and Langmuir model was found to be more applicable in interpreting MB adsorption on the magnetic nanocomposite silica. The pseudo-second order kinetic model adequately described the kinetic data.
similar resources
LaCo0.5Fe0.5O3 Nanoparticles as a Highly Efficient Adsorbent for Rapid Removal of Trypan Blue Dye From Aqueous Media
Nanoparticles of perovskite-type LaCo0.5Fe0.5O3 (LCFO) were fabricated by sol–gel method.Thermal decomposition process of the complex precursor was examined by means of differentialthermal analysis–thermal gravimetric analysis (DTA/TGA). X-ray diffraction (XRD) resultsshowed that single perovskite phase has been completely formed after calcination at 750 °C. Inaddition, the surface morphology a...
full textRemoval of methylene blue from aqueous solutions using modified clay
Introduction: Discharging of industrial colored wastewaters especially into aqueous environments can cause adverse effects on aquatic life due to their toxic natures. In this study, montmorillonite modified by hexadecyltrimethyl ammonium bromide (HDTMA-Mt) was used for the adsorption of methylene blue (MB). Materials and Methods: The influence of surfactant loading rate, contact time, pH, adso...
full textEvaluation Low Cost Adsorbent of Walnut Bark Granule for Methylene Blue Dye Removal from Aqueous Environments
Background & Aims of the Study: Methylene blue (MB) is a risk for human and environment. Adsorption process is one of the removal mechanisms of MB. The purpose of this research was the evaluation of low cost adsorbent of walnut bark granule for MB dye removal from aqueous environments. Materials & Methods: In this experimental research, the effect of various operating parameters...
full textRemoval of methylene blue dye aqueous solution using photocatalysis
The nano sized TiO2 and ZnO are the most active photocatalysts. Methylene blue was used as a reference molecule for the photocatalytic degradation. The TiO2 and ZnO can totally remove methylene blue dye. The effect of various process parameters like initial concentration, contact time, dose of catalyst and pH on the extent of removal of dye by photocatalysis in presence o...
full textRemoval of methylene blue dye aqueous solution using photocatalysis
The nano sized TiO2 and ZnO are the most active photocatalysts. Methylene blue was used as a reference molecule for the photocatalytic degradation. The TiO2 and ZnO can totally remove methylene blue dye. The effect of various process parameters like initial concentration, contact time, dose of catalyst and pH on the extent of removal of dye by photocatalysis in presence o...
full textA Comparative Study for the Removal of Methylene Blue Dye from Aqueous Solution by Novel Activated Carbon Based Adsorbents
This study was conducted to assess the ability of the studied adsorbent, i.e. raw oak fruit hulls and the activated carbon prepared from oak fruit hull for removing the Methylene blue (MB) from aqueous solution. This study was conducted under various effective parameters, e.g., contact time, pH, MB concentration, adsorbent concentration. The optimum amount of each parameter was determined a...
full textMy Resources
Journal title
volume 8 issue 2
pages 159- 170
publication date 2020-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023