Nonlocal Bending Analysis of Bilayer Annular/Circular Nano Plates Based on First Order Shear Deformation Theory
Authors
Abstract:
In this paper, nonlinear bending analysis of bilayer orthotropic annular/circular graphene sheets is studied based on the nonlocal elasticity theory. The equilibrium equations are derived in terms of generalized displacements and rotations considering the first-order Shear deformation theory (FSDT). The nonlinear governing equations are solved using the differential quadrature method (DQM) which is a highly accurate numerical method and a new semi-analytical polynomial method (SAPM). The ordinary differential equations (ODE’s) are converted to the nonlinear algebraic equations applying DQM or SAPM. Then, the Newton–Raphson iterative scheme is applied. The obtained results of DQM and SAPM are compared. It is concluded that although, the SAPM’s formulation is considerably simple in comparison with DQM, however, the results of two methods are so close to each other. The results are validated with available researches. The effects of small scale parameter, the value of van der Waals interaction between the layers, different values of elastic foundation and loading, the comparison between the local and nonlocal deflections and linear to nonlinear analysis are investigated.
similar resources
Free Vibrations Analysis of Functionally Graded Rectangular Nano-plates based on Nonlocal Exponential Shear Deformation Theory
In the present study the free vibration analysis of the functionally graded rectangular nanoplates is investigated. The nonlocal elasticity theory based on the exponential shear deformation theory has been used to obtain the natural frequencies of the nanoplate. In exponential shear deformation theory an exponential functions are used in terms of thickness coordinate to include the effect of tr...
full textnonlinear bending analysis of thick functionally graded plates based on third-order shear deformation plate theory
in this paper the nonlinear bending analysis of thick functionally graded plates subjected to mechanical loading is studied. the formulation is derived based on the third-order shear deformation plate theory and von kármán type non-linearity. young’s modulus is assumed to vary according to a power law distribution in terms of the volume fractions of the constituents. the principle of virtual wo...
full textAnalysis of Bending and Buckling of Circular Porous Plate Using First-Order Shear Deformation Theory
Porous materials are lightweight, flexible and resistant to hairline cracks, so today with the development of technology porous structure produced for use in various industries. This structure widely use in beams, plates and shells. The purpose of this paper is to investigate the effect of porosity in axial symmetry in bending and buckling load sheet for analysis. For this purpose, a circular p...
full textVibration Analysis of FG Nanoplate Based on Third-Order Shear Deformation Theory (TSDT) and Nonlocal Elasticity
In present study, the third-order shear deformation theory has been developed to investigate vibration analysis of FG Nano-plates based on Eringen nonlocal elasticity theory. The materials distribution regarding to the thickness of Nano-plate has been considered based on two different models of power function and exponential function. All equations governing on the vibration of FG Nano-plate ha...
full textBending Analysis of Thick Isotropic Plates by Using 5th Order Shear Deformation Theory
A 5th order shear deformation theory considering transverse shear deformation effect as well as transverse normal strain deformation effect is presented for static flexure analysis of simply supported isotropic plate. The assumed displacement field accounts for non-linear variation of in-plane displacements as well as transverse displacement through the plate thickness. The condition of zero ...
full textBending analysis of magneto-electro-thermo-elastic functionally graded nanobeam based on first order shear deformation theory
In this research, analysis of nonlocal magneto-electro-thermo-elastic of a functionally graded nanobeamdue to magneto-electro-elastic loads has been done. In order to formulate the problem the Timoshenko theory of beams is utilized. The principle of virtual work, Hamilton’s principle as well as nonlocal magneto-electro-thermo-elastic relations has been recruited to derive the governing eq...
full textMy Resources
Journal title
volume 8 issue 3
pages 645- 661
publication date 2016-09-20
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023