Nonlinear Vibration and Instability Analysis of a PVDF Cylindrical Shell Reinforced with BNNTs Conveying Viscose Fluid Using HDQ Method
Authors
Abstract:
Using harmonic differential quadrature (HDQ) method, nonlinear vibrations and instability of a smart composite cylindrical shell made from piezoelectric polymer of polyvinylidene fluoride (PVDF) reinforced with boron nitride nanotubes (BNNTs) are investigated while clamped at both ends and subjected to combined electro-thermo-mechanical loads and conveying a viscous-fluid. The mathematical modeling of the cylindrical shell and the resulting nonlinear coupling governing equations between mechanical and electrical fields are derived using Hamilton’s principle based on the first-order shear deformation theory (FSDT) in conjunction with the Donnell's non-linear shallow shell theory. The governing equations are discretized via HDQ method, and solved to obtain the resonant frequencies and critical flow velocities associated with divergence and flutter instabilities as well as re-stabilization of the system. Results indicate that the internal moving fluid plays an important role in the instability of the cylindrical shell. Application of a smart material such as PVDF improves significantly the stability and vibration of the system.
similar resources
nonlinear vibration and instability of embedded viscose-fluid-conveying pipes using dqm
in this paper, nonlinear vibration and instability response of an embedded pipe conveying viscose fluid is investigated. the pipe is considered as a timoshenko beam embedded on an elastic foundation which is simulated by spring constant of the winkler-model and the shear constant of the pasternak-model. the external flow force, acting on the beam in the direction of the flexural displacement is...
full textNonlinear Analysis of Flow-induced Vibration in Fluid-conveying Structures using Differential Transformation Method with Cosine-Aftertreatment Technique
In this work, analytical solutions are provided to the nonlinear equations arising in thermal and flow-induced vibration in fluid-conveying structures using Galerkin-differential transformation method with cosine aftertreatment technique. From the analysis, it was established that increase of the length and aspect ratio of the fluid-conveying structures result in decrease the nonlinear vibratio...
full textVibration analysis of double bonded composite pipe reinforced by BNNTs conveying oil
In the present research, nonlinear vibration in a coupled system of Boron-Nitride nano-tube reinforced composite (BNNTRC) oil pipes is studied. Single-walled Boron-Nitride nano-tubes (SWBNNTs) are arranged in a longitudinal direction inside Poly-vinylidene fluoride (PVDF) matrix. Damping and shearing effects of surrounded medium are taken into account by visco-Pasternak model. Based on piezoele...
full textAnalysis of the Effect of Fluid Velocity on the Instability of Concrete Pipes Reinforced with Nanoparticles Conveying the Fluid Flow
With respect to the great application of pipes conveying fluid in civil engineering, presenting a mathematical model for their stability analysis is essential. For this purpose, a concrete pipe, reinforced by iron oxide (Fe2O3) nanoparticles, conveying fluid is considered. The goal of this study is to investigate the structural stability to show the effects of the inside fluid and the nanopart...
full textNonlinear Nonlocal Vibration of an Embedded Viscoelastic Y-SWCNT Conveying Viscous Fluid Under Magnetic Field Using Homotopy Analysis Method
In the present work, effect of von Karman geometric nonlinearity on the vibration characteristics of a Y-shaped single walled carbon nanotube (Y-SWCNT) conveying viscose fluid is investigated based on Euler Bernoulli beam (EBB) model. The Y-SWCNT is also subjected to a longitudinal magnetic field which produces Lorentz force in transverse direction. In order to consider the small scale effects,...
full textThermo-mechanical nonlinear vibration analysis of fluid-conveying structures subjected to different boundary conditions using Galerkin-Newton-Harmonic balancing method
The development of mathematical models for describing the dynamic behaviours of fluid conveying pipes, micro-pipes and nanotubes under the influence of some thermo-mechanical parameters results into nonlinear equations that are very difficult to solve analytically. In cases where the exact analytical solutions are presented either in implicit or explicit forms, high skills and rigorous mathemat...
full textMy Resources
Journal title
volume 4 issue 3
pages 267- 276
publication date 2012-09-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023