Non-Linear Analysis of Functionally Graded Sector Plates with Simply Supported Radial Edges Under Transverse Loading
Authors
Abstract:
In this study, nonlinear bending of functionally graded (FG) circular sector plates with simply supported radial edges subjected to transverse mechanical loading has been investigated. Based on the first-order shear deformation plate theory with von Karman strain-displacement relations, the nonlinear equilibrium equations of sector plates are obtained. Introducing a stress function and a potential function, the governing equations which are five non-linear coupled equations with total order of ten are reformulated into three uncoupled ones including one linear edge-zone equation and two nonlinear interior equations with total order of ten. The uncoupling makes it possible to present analytical solution for nonlinear behavior of FG sector plates with simply-supported radial edges via perturbation technique and Fourier series method. The material properties are graded through the plate thickness according to a power-law distribution of the volume fraction of the constituents. The results are verified by comparison with the existing ones in the literature. The effects of non-linearity, material constant and boundary conditions on bending of an FG sector plate are studied. It is shown that in bending analysis of functionally graded sector plates, linear theory is solely applicable for w/h and is inadequate for analysis of fully simply supported FG sector plates even in the small deflection range.
similar resources
Buckling Analysis of Simply-supported Functionally Graded Rectangular Plates under Non-uniform In-plane Compressive Loading
In this research, mechanical buckling of rectangular plates of functionally graded materials (FGMs) is considered. Equilibrium and stability equations of a FGM rectangular plate under uniform in-plane compression are derived. For isotropic materials, convergent buckling loads have been presented for non-uniformly compressed rectangular plates based on a rigorous superposition fourier solution f...
full textBuckling Analysis of Thin Functionally Graded Rectangular Plates with two Opposite Edges Simply Supported
In this article, an exact analytical solution for thermal buckling analysis of thin functionallygraded (FG) rectangular plates is presented. Based on the classical plate theory and using the principle ofminimum total potential energy, the stability equations are obtained. Since the material properties in FGmaterials are functions of the coordinates (specially the thickness), the stability equat...
full textDynamic Instability Analysis of Transverse Vibrations of Functionally Graded Rectangular Plates under Moving Masses
In this paper, dynamic instability due to parametric and external resonances of moderately thick functionally graded rectangular plates, under successive moving masses, is examined. Plate mass per unit volume and Young’s modulus are assumed to vary continuously through the thickness of the plate and obey a power-law distribution of the volume fraction of the constituent. The considered rectangu...
full textNon-linear Thermo-mechanical Bending Behavior of Thin and Moderately Thick Functionally Graded Sector Plates Using Dynamic Relaxation Method
In this study, nonlinear bending of solid and annular functionally graded (FG) sector plates subjected to transverse mechanical loading and thermal gradient along the thickness direction is investigated. Material properties are varied continuously along the plate thickness according to power-law distribution of the volume fraction of the constituents. According to von-Karman relation for large ...
full textBuckling Analysis of Rectangular Functionally Graded Plates with an Elliptic Hole Under Thermal Loads
This paper presents thermal buckling analysis of rectangular functionally graded plates (FG plates) with an eccentrically located elliptic cutout. The plate governing equations derived by the first order shear deformation theory (FSDT) and finite element formulation is developed to analyze the plate behavior subjected to a uniform temperature rise across plate thickness. It is assumed that the ...
full textIsogeometric-Based Modeling and Analysis of Laminated Composite Plates Under Transverse Loading
Analysis of the laminated composite plates under transverse loading is considered using the new method of Isogeometric Analysis (IGA). Non-Uniform Rational B-Splines(NURBS)are used as shape functions for modeling the geometry of the structure and also are used as shape functions in the analysis process. To show robustness of the new technique, some examples are represented and are compared with...
full textMy Resources
Journal title
volume 6 issue 1
pages 65- 74
publication date 2019-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023