Ni@Zeolite-Y Nano-Porous: Preparation and Application as a High Efficient Catalyst for Facile Synthesis of Quinoxaline, Pyridopyrazine, and Inadoloquinoxaline Derivatives
Authors
Abstract:
In this research, by a simple and modified method, nanoporous of Ni(II) ion loaded Y-type zeolite (NNZ) was designed and applied as a novel highly efficient catalyst for the synthesis of quinoxalines, pyrido[2,3-b]pyrazines, and indolo[2,3-b]quinoxalines 3a-s. These heterocycles were obtained through a one-pot condensation reaction of aryl-1,2-diamines with 1,2-diketones or the isatin in the presence of catalytic amount of Ni@zeolite-Y in ethanol or acetic acid at room temperature giving good to excellent yield. The structure of entitled catalyst was identified with FT-IR spectroscopy, Energy Dispersive X-ray (EDX), Scanning Electron Microscopy (SEM) and Brunauer-Emmett-Teller (BET) analysis. This method has some advantages such as the use of inexpensive, safety, stable and recyclable catalyst, high yields, short reaction times, and easy isolation of the product. It can be claimed that this approach in simplicity covers the goals of green chemistry.
similar resources
nano-rods zno as an efficient catalyst for the synthesis of chromene phosphonates, direct amidation and formylation of amines
چکیده ندارد.
Nano TiO2@KSF as a high-efficient catalyst for solvent-free synthesis of Biscoumarin derivatives
An efficient, simple and convenient route is described for the synthesis of biscoumarin (3,3'-(arylmethylene) bis (4-hydroxy-2H-chromen-2-one)) by using of recyclable catalyst TiO2@KSF. In this Method, we synthesis biscoumarin derivatives via 3multi-component reactions (3MCRs) of two equivalent 4-hydroxycoumarin with one equivalent of aromatic aldehydes using 20 mg nano TiO2@KSF as homogeneous ...
full textNano TiO2@KSF as a high-efficient catalyst for solvent-free synthesis of Biscoumarin derivatives
An efficient, simple and convenient route is described for the synthesis of biscoumarin (3,3'-(arylmethylene) bis (4-hydroxy-2H-chromen-2-one)) by using of recyclable catalyst TiO2@KSF. In this Method, we synthesis biscoumarin derivatives via 3multi-component reactions (3MCRs) of two equivalent 4-hydroxycoumarin with one equivalent of aromatic aldehydes using 20 mg nano TiO2@KSF as homogeneous ...
full textVitamin C as a green and efficient catalyst in synthesis of quinoxaline derivatives at room temperature
A simple, highly efficient and green procedure for the condensation of o-phenylenediamines with 1, 2-dicarbonyl compounds in the presence of vitamin C, as an inexpensive organocatalyst, is described. Using this method, variety of quinoxaline derivatives with different electron releasing and electron withdrawing substituents, are produced in high to excellent yields at room temperature in ethano...
full textVitamin C as a green and efficient catalyst in synthesis of quinoxaline derivatives at room temperature
A simple, highly efficient and green procedure for the condensation of o-phenylenediamines with 1, 2-dicarbonyl compounds in the presence of vitamin C, as an inexpensive organocatalyst, is described. Using this method, variety of quinoxaline derivatives with different electron releasing and electron withdrawing substituents, are produced in high to excellent yields at room temperature in ethano...
full textThe preparation of quinoxaline and 2,3-dihydropyrazine derivatives using selectfluor as an efficient and reusable catalyst
Selectfluor [1-(chloro methyl) -4-flouro -1,4-di azonia bicyclo[2,2,2] octane bis (tetraflouro-borate)] catalyzed the preparation of quinoxaline and 2,3-dihydo pyrazine derivatives through one -pot condensation of 1,2-di amines with 1,2-di carbonyls in solvent and under solvent- free conditions. This catalyst is commercially available, inexpensive, reusable, stable to air and moisture, and rela...
full textMy Resources
Journal title
volume 38 issue 1
pages 27- 41
publication date 2019-02-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023