Multi-component preparation of diethyl/methyl 1,3-diaryl-1,2,3,6-tetrahydro-pyrimidine-4,5-dicarboxylates using hydrated phosphomolybdic acid as an efficient catalyst

Authors

  • Majid Ghashang Department of Chemistry, Faculty of Sciences, Najafabad Branch, Islamic Azad University, Najafabad, Esfahan, Iran; P.O. Box: 517
  • Mehdi Abaszadeh Pharmaceutics Research Center, Kerman University of Medical Sciences, Kerman 76175-493, Iran.
  • Mohammad Seifi Department of Chemistry, Faculty of Sciences, Najafabad Branch, Islamic Azad University, Najafabad, Esfahan, Iran; P.O. Box: 517
Abstract:

The synthesis of diethyl/methyl 1,3-diaryl-1,2,3,6-tetrahydro-pyrimidine-4,5-dicarboxylates can be achieved using one-pot reaction from dialkylacetylene dicarboxylate, amines, and formaldehyde by employing hydrated phosphomolybdic acid (H3[P(Mo3O10)4].xH2O) as catalyst at room temperature. The effect of various solvent and catalyst amount was investigated. The salient features of the present method are: simple and straightforward work-up, cost-effective and environmentally benign procedure. The obtained yield of products was in the range of 75-92%. Based on the obtained results, the steric effects of the substituents in dialkylacetylene dicarboxylates played significant role in the rate of the reaction. When diethylacetylene dicarboxylate were used in this process, the corresponding product was obtained in good yields but in longer reaction time. Electron donating group on the amine was able to facilitate the transformation by giving evidently shorter reaction times.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

multi-component preparation of diethyl/methyl 1,3-diaryl-1,2,3,6-tetrahydro-pyrimidine-4,5-dicarboxylates using hydrated phosphomolybdic acid as an efficient catalyst

the synthesis of diethyl/methyl 1,3-diaryl-1,2,3,6-tetrahydro-pyrimidine-4,5-dicarboxylates can be achieved using one-pot reaction from dialkylacetylene dicarboxylate, amines, and formaldehyde by employing hydrated phosphomolybdic acid (h3[p(mo3o10)4].xh2o) as catalyst at room temperature. the effect of various solvent and catalyst amount was investigated. the salient features of the present me...

full text

Trichloroacetic Acid as an Efficient Catalyst for One-pot Synthesis of Highly Functionalized Piperidines via multi-component Reaction

Trichloroacetic Acid (TCA) was used as an efficient catalyst for the synthesis of highly functionalized piperidines via a one-pot five-component reaction of aromatic amines, aromatic aldehydes and β-keto esters in MeOH at room temperature. The remarkable advantages offered by this method are good yields, simple procedure, short reaction times, no need to column chromatography and an easy wo...

full text

Synthesis of Bis-4-hydroxycoumarins via a Multi Component Reaction Using Silica Boron-sulfuric Acid Nanoparticles (SBSANs) as an Efficient Heterogeneous Solid Acid Catalyst

The silica boron sulfuric acid nanoparticles (SBSANs) as an efficient heterogeneous solid acid catalyst with both Brønsted and Lewis acidic sites catalyzed the preparation of bis-4-hydroxycoumarin derivatives using reaction of aldehydes and 4-hydroxycoumarin under mild and solvent-free condition at room temperature. This new and efficient methodology has advantages in comparison with currently ...

full text

Multicomponent preparation of highly functionalized piperidines using FeCl3.6H2O as an efficient catalyst

FeCl3.6H2O was used as an efficient catalyst for the synthesis of highly functionalized piperidines via a one-pot five-component reaction of aromatic amines, aromatic aldehydes and β-keto esters in EtOH at room temperature. The remarkable advantages offered by this method are good yields, simple procedure, short reaction times, no need to column chromatography and easy work-up. The structures o...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 2

pages  113- 117

publication date 2015-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023