Molybdenum-Schiff Base Complex Immobilized on Magnetite Nanoparticles as a Reusable Epoxidation Catalyst

Authors

Abstract:

The surface of magnetite nanoparticles as nano-sized solid support was modified with a molybdenum-Schiff base complex to prepare an easily separable heterogeneous catalyst for the epoxidation of olefins. Characterization techniques such as Fourier transform infrared and inductively coupled plasma optical emission spectroscopies, X-ray diffraction, vibrating sample magnetometry, scanning, and transmission electron microscopies indicated the presence of molybdenum-Schiff base complex and a magnetite core in the catalyst. The magnetite nanoparticles supported Mo catalyst exhibited high catalytic activity and selectivity toward the epoxidation of olefins and was easily recovered from the reaction mixture by magnetic separation to be utilized for subsequent reactions. The catalyst showed reusability for three times without significant loss of activity.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Mn(II)-Schiff base complex immobilized onto MCM-41 matrix as a heterogeneous catalyst for epoxidation of alkenes

A heterogeneous catalyst containing manganese Schiff base complex (derived from 2,4-dihydroxybenzadehyde and 1,2-phenylenediamine) is produced by covalent anchoring in MCM-41 matrix. The synthesized catalyst was characterized by X-ray diffraction pattern (XRD), inductivity coupled plasma (ICP), Fourier transform infrared (FT-IR) spectroscopy, N2 sorbtion-desorbtion isotherm and by tr...

full text

Hybrid Organometallic-Inorganic Nanomaterial: Acetyl Ferrocene Schiff base Immobilized on Silica Coated Magnetite Nanoparticles

In  this  work,  a  new  hybrid  organometallic-inorganic  hybrid nanomaterial was prepared by immobilization of acetyl ferrocene on the  surface  of magnetite  nanoparticles. Covalent  grafting of silica coated magnetite nanoparticles (SCMNPs) with 3-aminopropyl triethoxysilane gave aminopropyl-modified magnetite nanoparticles (AmpSCMNPs). Then, Schiff base condensation  of AmpSCMNPs with acet...

full text

New Molybdenum Epoxidation Catalyst Derived From Nanoporous MCM-41 Supported Glycine Schiff-Base

Covalent grafting of the nanoporous molecular sieve MCM-41 with 3- aminopropyl trimethoxysilane and acetyl acetone (acac) successively gave modified MCM-41 (acacAmpMCM-41). Reaction of the resulted material with glycine afforded the corresponding supported glycine Schiff base ligand and subsequent reaction with [bis(acetylacetonato)dioxomolybdenum(VI)] was lead to molybdenum complex suppor...

full text

Immobilization of a molybdenum complex with tetradentate ligand on mesoporous material MCM-41 as catalyst for epoxidation of olefins

Covalent grafting of MCM-41 with 3-chloropropyl trimethoxysilane and subsequent reaction respectively with acacdien and complexation with MoO2(acac)2 afforded MoO2acacdien@MCM-41. X-ray diffraction and nitrogen sorption analyses revealed the preservation of the textural properties of the support as well as accessibility of the channel system despite sequential reduction in surface area, pore vo...

full text

hybrid organometallic-inorganic nanomaterial: acetyl ferrocene schiff base immobilized on silica coated magnetite nanoparticles

in  this  work,  a  new  hybrid  organometallic-inorganic  hybrid nanomaterial was prepared by immobilization of acetyl ferrocene on the  surface  of magnetite  nanoparticles. covalent  grafting of silica coated magnetite nanoparticles (scmnps) with 3-aminopropyl triethoxysilane gave aminopropyl-modified magnetite nanoparticles (ampscmnps). then, schiff base condensation  of ampscmnps with acet...

full text

Immobilization of a new (salen) molybdenum(VI) complex onto the ion-exchangeable polysiloxane as a heterogeneous epoxidation catalyst

In this study, a new recoverable catalyst for the epoxidation of olefins was developed using a layered polysiloxane as a support for immobilizing  (salen) molybdenum(VI) complex by electrostatic interaction between the surface of the solid support and the electrically charged molybdenum complex. Characterization of the heterogeneous catalyst by Fourier transform infrared, XRD,1H NMR,...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 37  issue 6

pages  35- 42

publication date 2018-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023