Meshless analysis of casting process considering non-Fourier heat transfer

Authors

  • M. R. Hematiyan Department of Mechanical Engineering, Shiraz University, Shiraz, Iran
Abstract:

Casting is considered as a major manufacturing process. Thermal analysis of a solidifying medium is of great importance for appropriate design of casting processes. The conventional governing equation of a solidifying medium is based on the Fourier heat conduction law, which does not account for the phase-lag between the heat flux and the temperature gradient. In this paper, the concept of phase-lag during the phenomenon of solidification is investigated. This concept is considered by utilization of the hyperbolic heat conduction equation, known generally as the Maxwell–Cattaneo relation. In this way, the effect of finite heat wave speed on the thermal behavior of a solidifying medium is studied. In this context, some numerical example problems are analyzed with the meshless radial point interpolation method. The effect of the relaxation time on the thermal behavior of the solidifying medium is investigated. Moreover, the results of Fourier and non-Fourier heat conduction equations are compared. It is observed that based on the specific solidification process and the amount of relaxation time, the results of the Fourier and non-Fourier conduction laws can be quite different. The most prominent effect of the relaxation time is to alter the initiation of the solidification at each point.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

A truly meshless method formulation for analysis of non-Fourier heat conduction in solids

The non-Fourier effect in heat conduction is important in strong thermal environments and thermal shock problems. Generally, commercial FE codes are not available for analysis of non-Fourier heat conduction. In this study, a meshless formulation is presented for the analysis of the non-Fourier heat conduction in the materials. The formulation is based on the symmetric local weak form of the sec...

full text

Mathematical Modeling of Heat Transfer for Steel Continuous Casting Process

     Heat transfer mechanisms and the solidification process are simulated for a continuous casting machine and the geometric shape of the liquid pool is predicted considering different conditions. A heat transfer and solidification model is described for the continuous casting of steel slabs. The model has been established on the basis of the technical conditions of the slab caster in the con...

full text

Non-Fourier Heat Transfer Analysis of Functionally Graded Spherical Shells under Convection-Radiation Conditions

Non-Fourier heat transfer analysis of functionally graded (FG) spherical shells subjected to the radiative-convective boundary conditions at their inner and outer surfaces are presented. It is assumed that the material properties have continuous variations along the thickness direction. The incremental differential quadrature method (IDQM) as an accurate and computationally efficient numerical ...

full text

mathematical modeling of heat transfer for steel continuous casting process

heat transfer mechanisms and the solidification process are simulated for a continuous casting machine and the geometric shape of the liquid pool is predicted considering different conditions. a heat transfer and solidification model is described for the continuous casting of steel slabs. the model has been established on the basis of the technical conditions of the slab caster in the continuou...

full text

non-fourier heat transfer analysis of functionally graded spherical shells under convection-radiation conditions

non-fourier heat transfer analysis of functionally graded (fg) spherical shells subjected to the radiative-convective boundary conditions at their inner and outer surfaces are presented. it is assumed that the material properties have continuous variations along the thickness direction. the incremental differential quadrature method (idqm) as an accurate and computationally efficient numerical ...

full text

Heat Transfer, Environmental Benefits, and Social Cost Analysis of Different Insulation Methods by Considering Insulation Disadvantages

In this paper, the thermal performance of four common insulators in two internal and external insulation systems is investigated for the ASHRAE setpoint range by applying detailed numerical simulation and Anti-Insulation phenomenon. Anti-Insulation phenomenon and consequent extra load on the HVAC system can occur following the thermal insulation of a building if proper temperature setpoint is n...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 2

pages  13- 25

publication date 2016-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023