Mechanochemical synthesis of alumina nanoparticles
Authors
Abstract:
Abstract: Nano- size alumina particles have been synthesized by mechanical activation of a dry powder mixture of AlCl3 and CaO. Mechanical milling of the above raw materials with the conditions adopted in this study resulted in the formation of a mixture consisting of crystalline CaO and amorphous aluminum chlorides phases. There was no sign of chemical reaction occurring during milling stage as evidenced by x-ray diffraction studies. Subsequent heat treatment of the milled powder at 350ºC resulted in the occurrence of displacement reaction and the formation of Al2O3 particles within a water soluble CaCl2 matrix. The effect of higher temperature calcinations on the phase development in this powder mixture was followed by X-ray diffraction (XRD) analysis and scanning electron microscope ( SEM). Differential thermal analysis (DTA) was used to compare the thermal behavior between the milled and unmilled powders. Perhaps the most important result in this study was the observation of á-Al2O3 phase at a very low temperature of 500ºC.
similar resources
Microwave-Assisted Synthesis of Alumina Nanoparticles Using Some Plants Extracts
In present study we used five green plants for microwave assisted synthesis of Alumina nanoparticles from Aluminum nitrate. Structural characterization was studied using x-ray diffraction that showed semi- crystalline and possibly, amorphous structure. Fourier infrared spectroscopy was used to determine Al-O bond and functional groups responsible for synthesis of nanoparticles. FTIR confirmed e...
full textmicrowave-assisted synthesis of alumina nanoparticles using some plants extracts
in present study we studied using green routes for microwave assisted synthesis of alumina nanoparticles from aluminum nitrate. it was revealed that when plant extracts are used, no specific stabilizer is needed. structural characterization of nanoparticles was studied using x-ray diffraction that showed semi-crystalline structure for two of plant extracts, other xrd patterns had no significant...
full textFacile synthesis of copper oxide nanoparticles using copper hydroxide by mechanochemical process
A facile mechanochemical-based method for synthesis of copper oxide (CuO) nanoparticles is here by introduced. For this purpose, copper hydroxide powder was synthesized through a facile solution method (CuSO4 + 2 Na(OH) → Cu(OH)2 + Na2SO4) after which milling of as-prepared Cu(OH)2 precursor and NaCl resulted in the mechanochemical dehydration of Cu(OH)2 and dispersion of CuO nanoparticles into...
full textNovel One-Pot Synthesis of Pyrazolopyranopyrimidinones Using Newly Produced γ-Alumina Nanoparticles as Powerful Catalyst
g-Alumina nanoparticles (g-Al2O3 NPs) were prepared via a new and simple synthetic route and characterized by field emission scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The catalytic activity of prepared g-Al2O3 NPs was investigated for the new one-pot, ...
full textSpecific Surface Area Increment of Alumina Nanoparticles Using Mineral Fuels in Combustion Synthesis
Ammonium carbonate and ammonium sulfate have been proposed and used as two new fuels for synthesizing gamma alumina nanoparticles. The prepared samples have been characterized by X-ray diffraction (XRD), 2 N adsorption (BET) and Transmission electron microscopy (TEM). A comparison has been made between the properties of the nanoparticles synthesized by these two fuels and other conventio...
full textSynthesis and characterization of Alumina (Al2O3) nanoparticles prepared by simple sol-gel method
Alumina is one of the most widely used ceramic materials as catalysts, catalyst supports and absorbents, and also wear resistant coating. This study focused on fabricating and characterizing of alumina ceramic nanoparticles fabricated using new and simple sol-gel method. Aluminium oxide (Al2O3) nanoparticles were synthesized by iron (III) nitrate 9-hydrate as precursor. Physicochemical properti...
full textMy Resources
Journal title
volume 6 issue 1
pages 26- 30
publication date 2009-03
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023