Mechanical Behavior of a FGM Capacitive Micro-Beam Subjected to a Heat Source

Authors

  • G Rezazadeh Mechanical Engineering Department, Urmia University
  • I JafarSadeghi-Pournaki Mechanical Engineering Department, Urmia University
  • M.R Zamanzadeh Mechanical Engineering Department, Urmia University
  • R Shabani Mechanical Engineering Department, Urmia University
Abstract:

This paper presents mechanical behavior of a functionally graded (FG) cantilever micro-beam subjected to a nonlinear electrostatic pressure and thermal moment considering effects of material length scale parameters. Material properties through the beam thickness direction are graded. The top surface of the micro-beam is made of pure metal and the bottom surface from a mixture of metal and ceramic. The material properties through the thickness direction follow the volume fraction of the constitutive materials in exponential function form. The governing nonlinear thermo-electro-mechanical differential equation based on Euler-Bernoulli beam theory assumptions is derived using modified couple stress theory (MCST) and is solved using the Galerkin based weighted residual method. The effects of the electrostatic pressure and temperature changes on the deflection and stability of the FGM micro-beam, having various ceramic constituent percents, are studied. The obtained results are compared with the results predicted by classic theory (CT) and for some cases are verified with those reported in the literature.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Static Pull-in Analysis of Capacitive FGM Nanocantilevers Subjected to Thermal Moment using Eringen’s Nonlocal Elasticity

This paper aims to investigate the pull-in phenomenon of functionally graded (FG) capacitive nanocantilevers subjected to an electrostatic force and thermal moment due to an applied voltage and thermal shock considering intermolecular force within the framework of nonlocal elasticity theory to account for the small scale effect. The FG nano-beam is made of mixture of metal and ceramic which the...

full text

Thermo-elastic Damping in a Capacitive Micro-beam Resonator Considering Hyperbolic Heat Conduction Model and Modified Couple Stress Theory

In this paper, the quality factor of thermo-elastic damping in an electro-statically deflected micro-beam resonator has been investigated. The thermo-elastic coupled equations for the deflected micro-beam have been derived using variational and Hamilton principles based on modified couple stress theory and hyperbolic heat conduction model. The thermo-elastic damping has been obtained discretizi...

full text

Effect of Temperature Changes on Dynamic Pull-in Phenomenon in a Functionally Graded Capacitive Micro-beam

In this paper, dynamic behavior of a functionally graded cantilever micro-beam and its pull-in instability, subjected to simultaneous effects of a thermal moment and nonlinear electrostatic pressure, has been studied. It has been assumed that the top surface is made of pure metal and the bottom surface from a metal–ceramic mixture. The ceramic constituent percent of the bottom surface ranges fr...

full text

Crack Influences on the Static and Dynamic Characteristic of a Micro-Beam Subjected to Electro Statically Loading

In the present work the pull-in voltage of a micro cracked cantilever beam subjected to nonlinear electrostatic pressure was studied. Two mathematical models were employed for modeling the problem: a lumped mass model and a classical beam model. The effect of crack in the lumped mass model is the reduction of the effective stiffness of the beam and in the beam model; the crack is modeled as a m...

full text

Effect of Electric Potential Distribution on Electromechanical Behavior of a Piezoelectrically Sandwiched Micro-Beam

The paper deals with the mechanical behavior of a micro-beam bonded with two piezoelectric layers. The micro-beam is suspended over a fixed substrate and undergoes the both piezoelectric and electrostatic actuation. The piezoelectric layers are poled through the thickness and equipped with surface electrodes. The equation governing the micro-beam deflection under electrostatic pressure is deriv...

full text

Frequency Response Analysis of a Capacitive Micro-beam Resonator Considering Residual and Axial Stresses and Temperature Changes Effects

This paper presents a study on the frequency response of a capacitive micro-beam resonator under various applied stresses. The governing equation whose solution holds the answer to all our questions about the mechanical behavior is the nonlinear electrostatic equation. Due to the nonlinearity and complexity of the derived equation analytical solution are not generally available; therefore, the ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 2

pages  158- 171

publication date 2011-06-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023