Linear programming on SS-fuzzy inequality constrained problems
Authors
Abstract:
In this paper, a linear optimization problem is investigated whose constraints are defined with fuzzy relational inequality. These constraints are formed as the intersection of two inequality fuzzy systems and Schweizer-Sklar family of t-norms. Schweizer-Sklar family of t-norms is a parametric family of continuous t-norms, which covers the whole spectrum of t-norms when the parameter is changed from zero to infinity. Firstly, we investigate the resolution of the feasible region of the problem and studysome theoretical results. A necessary and sufficient condition and three other necessary conditions are derived for determining the feasibility. Moreover, in order to simplify the problem, some procedures are presented. It is proved that the optimal solution of the problem is always resulted from the unique maximum solution and a minimal solution of the feasible region. A method is proposed to generate random feasible max-Schweizer-Sklar fuzzy relational inequalities and an algorithm is presented to solve the problem. Finally, an example is described to illustrate these algorithms.
similar resources
Fully fuzzy linear programming with inequality constraints
Fuzzy linear programming problem occur in many elds such as mathematical modeling, Control theory and Management sciences, etc. In this paper we focus on a kind of Linear Programming with fuzzy numbers and variables namely Fully Fuzzy Linear Programming (FFLP) problem, in which the constraints are in inequality forms. Then a new method is proposed to ne the fuzzy solution for solving (FFLP). Nu...
full textSome new results on semi fully fuzzy linear programming problems
There are two interesting methods, in the literature, for solving fuzzy linear programming problems in which the elements of coefficient matrix of the constraints are represented by real numbers and rest of the parameters are represented by symmetric trapezoidal fuzzy numbers. The first method, named as fuzzy primal simplex method, assumes an initial primal basic feasible solution is at hand. T...
full textA goal programming approach for fuzzy flexible linear programming problems
We are concerned with solving Fuzzy Flexible Linear Programming (FFLP) problems. Even though, this model is very practical and is useful for many applications, but there are only a few methods for its situation. In most approaches proposed in the literature, the solution process needs at least, two phases where each phase needs to solve a linear programming problem. Here, we propose a method t...
full textSOLVING FUZZY LINEAR PROGRAMMING PROBLEMS WITH LINEAR MEMBERSHIP FUNCTIONS-REVISITED
Recently, Gasimov and Yenilmez proposed an approach for solving two kinds of fuzzy linear programming (FLP) problems. Through the approach, each FLP problem is first defuzzified into an equivalent crisp problem which is non-linear and even non-convex. Then, the crisp problem is solved by the use of the modified subgradient method. In this paper we will have another look at the earlier defuzzifi...
full textfully fuzzy linear programming with inequality constraints
fuzzy linear programming problem occur in many elds such as mathematical modeling, control theory and management sciences, etc. in this paper we focus on a kind of linear programming with fuzzy numbers and variables namely fully fuzzy linear programming (fflp) problem, in which the constraints are in inequality forms. then a new method is proposed to ne the fuzzy solution for solving (fflp). ...
full textMy Resources
Journal title
volume 50 issue issue 2
pages 13- 36
publication date 2018-12-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023