Lie $^*$-double derivations on Lie $C^*$-algebras
author
Abstract:
A unital $C^*$ -- algebra $mathcal A,$ endowed withthe Lie product $[x,y]=xy- yx$ on $mathcal A,$ is called a Lie$C^*$ -- algebra. Let $mathcal A$ be a Lie $C^*$ -- algebra and$g,h:mathcal A to mathcal A$ be $Bbb C$ -- linear mappings. A$Bbb C$ -- linear mapping $f:mathcal A to mathcal A$ is calleda Lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all $a,bin mathcal A.$ In this paper, our main purpose is to prove thegeneralized Hyers –- Ulam –- Rassias stability of Lie $*$ -double derivations on Lie $C^*$ - algebras associated with thefollowing additive mapping:begin{align*}sum^{n}_{k=2}(sum^{k}_{i_{1}=2} sum^{k+1}_{i_{2}=i_{1}+1}...sum^{n}_{i_{n-k+1}=i_{n-k}+1}) f( sum^{n}_{i=1, ineqi_{1},..,i_{n-k+1} } x_{i}&-sum^{n-k+1}_{ r=1}x_{i_{r}})+f(sum^{n}_{ i=1} x_{i})&=2^{n-1} f(x_{1}) end{align*} for a fixed positive integer $n$ with $n geq 2.$
similar resources
lie $^*$-double derivations on lie $c^*$-algebras
a unital $c^*$ -- algebra $mathcal a,$ endowed withthe lie product $[x,y]=xy- yx$ on $mathcal a,$ is called a lie$c^*$ -- algebra. let $mathcal a$ be a lie $c^*$ -- algebra and$g,h:mathcal a to mathcal a$ be $bbb c$ -- linear mappings. a$bbb c$ -- linear mapping $f:mathcal a to mathcal a$ is calleda lie $(g,h)$ -- double derivation if$f([a,b])=[f(a),b]+[a,f(b)]+[g(a),h(b)]+[h(a),g(b)]$ for all ...
full textthe structure of lie derivations on c*-algebras
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
15 صفحه اولDouble derivations of n-Lie algebras
After introducing double derivations of $n$-Lie algebra $L$ we describe the relationship between the algebra $mathcal D(L)$ of double derivations and the usual derivation Lie algebra $mathcal Der(L)$. In particular, we prove that the inner derivation algebra $ad(L)$ is an ideal of the double derivation algebra $mathcal D(L)$; we also show that if $L$ is a perfect $n$-Lie algebra wit...
full textCharacterization of Lie higher Derivations on $C^{*}$-algebras
Let $mathcal{A}$ be a $C^*$-algebra and $Z(mathcal{A})$ the center of $mathcal{A}$. A sequence ${L_{n}}_{n=0}^{infty}$ of linear mappings on $mathcal{A}$ with $L_{0}=I$, where $I$ is the identity mapping on $mathcal{A}$, is called a Lie higher derivation if $L_{n}[x,y]=sum_{i+j=n} [L_{i}x,L_{j}y]$ for all $x,y in mathcal{A}$ and all $ngeqslant0$. We show that ${L_{n}}_{n...
full textLie-type higher derivations on operator algebras
Motivated by the intensive and powerful works concerning additive mappings of operator algebras, we mainly study Lie-type higher derivations on operator algebras in the current work. It is shown that every Lie (triple-)higher derivation on some classical operator algebras is of standard form. The definition of Lie $n$-higher derivations on operator algebras and related pot...
full textNonlinear $*$-Lie higher derivations on factor von Neumann algebras
Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.
full textMy Resources
Journal title
volume 1 issue 2
pages 63- 71
publication date 2010-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023