Investigation of nanoparticles diameter on free convection of Aluminum Oxide-Water nanofluid by single phase and two phase models

Authors

Abstract:

In this research, effect of nanoparticles dimeter on free convection of aluminum oxide-water was investigated in a cavity by single phase and two phase models. The range of Rayleigh number is considered 105-107 in volume fractions of 0.01 to 0.03 for nanoparticles with various diameters (25, 33, 50 and 100 nm). Given that the two phase nature of nanofluids, necessity of modeling by this method is increasing. Single phase approach (in contrary of two phase) for nanofluids is based on that the behaviors of each two solid phase (nanoparticles) and liquid phase (base fluid) are completely similar. In this study, Eulerian-Eulerian approach and mixture model was used given that Brownian motion and thermophoresis effects. Brownian motion and thermophoresis creates under influences of volume fraction gradient and temperature gradient, respectively that cause to creating slip between nanoparticles and base fluid; thus, kind of non-uniformity creates on behavior between nanoparticles and base fluid. This non-uniformity leads to significant effects on results of two phase modeling that creates better agreement to single phase modeling with experimental results. Results indicate that heat transfer decreases with increasing diameter and volume fraction of nanoparticles. Also, effect of nanoparticle diameter on flow and heat transfer is tangible.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Numerical Study of Single Phase/Two-Phase Models for Nanofluid Forced Convection and Pressure Drop in a Turbulence Pipe Flow

In this paper, the problem of turbulent forced convection flow of water- alumina nanofluid in a uniformly heated pipe has been thoroughly investigated. In numerical study, single and two-phase models have been used. In single-phase modeling of nanofluid, thermal and flow properties of nanofluid have been considered to be dependent on temperature and volume fraction. Effects of volume fraction a...

full text

Investigation of the Effect of Nanoparticles Mean Diameter on Turbulent Mixed Convection of a Nanofluid in a Horizontal Curved tube Using a Two Phase Approach

Turbulent mixed convection of a nanofluid (water/Al2O3, Φ=.02) has been studied numerically. Two-phase mixture model has been used to investigate the effects of nanoparticles mean diameter on the flow parameters. Nanoparticles distribution at the tube cross section shows that the particles are uniformly dispersed. The non-uniformity of the particles distribution occurs in the case of large nano...

full text

numerical study of single phase/two-phase models for nanofluid forced convection and pressure drop in a turbulence pipe flow

in this paper, the problem of turbulent forced convection flow of water- alumina nanofluid in a uniformly heated pipe has been thoroughly investigated. in numerical study, single and two-phase models have been used. in single-phase modeling of nanofluid, thermal and flow properties of nanofluid have been considered to be dependent on temperature and volume fraction. effects of volume fraction a...

full text

synthesis of platinum nanostructures in two phase system

چکیده پلاتین، فلزی نجیب، پایدار و گران قیمت با خاصیت کاتالیزوری زیاد است که کاربرد های صنعتی فراوانی دارد. کمپلکس های پلاتین(ii) به عنوان دارو های ضد سرطان شناخته شدند و در شیمی درمانی بیماران سرطانی کاربرد دارند. خاصیت کاتالیزوری و عملکرد گزینشی پلاتین مستقیماً به اندازه و- شکل ماده ی پلاتینی بستگی دارد. بعضی از نانو ذرات فلزی در سطح مشترک مایع- مایع سنتز شده اند، اما نانو ساختار های پلاتین ب...

investigation of the effect of nanoparticles mean diameter on turbulent mixed convection of a nanofluid in a horizontal curved tube using a two phase approach

turbulent mixed convection of a nanofluid (water/al2o3, φ=.02) has been studied numerically. two-phase mixture model has been used to investigate the effects of nanoparticles mean diameter on the flow parameters. nanoparticles distribution at the tube cross section shows that the particles are uniformly dispersed. the non-uniformity of the particles distribution occurs in the case of large nano...

full text

Synthesis of Single Phase Tin(II) Oxide Nanoparticles by Microwave-Assisted Hydrothermal Technique

This paper presents a novel microwave-assisted hydrothermal technique for synthesizing tin(II) oxide nanoparticles. This technique can be used for producing large quantities of homogeneous nanoparticles in a short time. The effect of the solution molarity, final pH, hydrothermal processing time and microwave power were studied. The tin(II) oxide structure verified from XRD...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 1

pages  167- 180

publication date 2016-04-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023