Identifying the Determinant Factors Influencing S Index in Calcereous Soils Using Anneling Simulated– Artificial Neural Network Hybrid Algorithm

Authors

  • AmiriMijan, F. 1. Department of Soil Science, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
  • Besalatpour, A. 2. Inter 3 GmbH - Institut for Ressources management, Berlin, Germany.
  • Esfandiarpour, I. 1. Department of Soil Science, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
  • Shekofteh, H. 3. Department of Soil Science, Faculty of Agriculture, University of Jiroft, Jiroft, Kerman, Iran.
  • Shirani, H. 1. Department of Soil Science, College of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
Abstract:

Use of the curve gradient of the Soil Water Retention Curves (SWRC) in the inflection point (S Index) is one of the main indices for assessing the soil quality for management objectives in agricultural and garden lands. In this study Anneling Simulated – artificial neural network (SA-ANN) hybrid algorithm was used to identify the most effective soil features on estimation of S Index in Jiroft plain. For this purpose, 350 disturbed and undisturbed soils samples were collected from the agricultural and garden lands and then some physical and chemical soil properties including Sand, Silt, Clay percent, Electrical Conductivity at saturation, Bulk Density, total porosity, Organic Mater, and percent of equal Calcium Carbonate were measured. Moreover, the soil moisture amount was determined within the suctions of 0, 10, 30, 50, 100, 300, 500, 1000, 1500 KP using pressure plate. Then, the determinant features influencing the modeling of S Index were derived using SA-ANN hybrid algorithm. The results indicated that modeling precision increased by reducing the input variables. According to the sensitivity analysis, the Bulk Density had the highest sensitivity coefficient (sensitivity coefficient=0.5) and was identified as the determinant feature for modeling the S Index. So, since increasing the number of features does not necessarily increase the accuracy of modeling, reducing input features is due to cost reduction and time-consuming research.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Identifying Flow Units Using an Artificial Neural Network Approach Optimized by the Imperialist Competitive Algorithm

The spatial distribution of petrophysical properties within the reservoirs is one of the most important factors in reservoir characterization. Flow units are the continuous body over a specific reservoir volume within which the geological and petrophysical properties are the same. Accordingly, an accurate prediction of flow units is a major task to achieve a reliable petrophysical description o...

full text

Estimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network

Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...

full text

Modelling of some soil physical quality indicators using hybrid algorithm principal component analysis - artificial neural network

One of the important issues in the analysis of soils is to evaluate their features. In estimation of the hardly available properties, it seems the using of Data mining is appropriate. Therefore, the modelling of some soil quality indicators, using some of the early features of soil which have been proved by some researchers, have been considered. For this purpose, 140 disturbed and 140 undistur...

full text

Prediction of Driver’s Accelerating Behavior in the Stop and Go Maneuvers Using Genetic Algorithm-Artificial Neural Network Hybrid Intelligence

Research on vehicle longitudinal control with a stop and go system is presently one of the most important topics in the field of intelligent transportation systems. The purpose of stop and go systems is to assist drivers for repeatedly accelerate and stop their vehicles in traffic jams. This system can improve the driving comfort, safety and reduce the danger of collisions and fuel consumption....

full text

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

identifying flow units using an artificial neural network approach optimized by the imperialist competitive algorithm

the spatial distribution of petrophysical properties within the reservoirs is one of the most importantfactors in reservoir characterization. flow units are the continuous body over a specific reservoirvolume within which the geological and petrophysical properties are the same. accordingly, anaccurate prediction of flow units is a major task to achieve a reliable petrophysical description of a...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 23  issue 3

pages  381- 394

publication date 2019-12

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023