Herbal plants zoning using target detection algorithms on time-series of Sentinel-2 multispectral images (Amygdalus Scoparia)

Authors

  • Jafari , Marzieh University of Tafresh
  • Shakeri , Iman University of Tafresh
Abstract:

Today, medicinal plants have a special place in the economy and health of a society. Due to the natural growth of many of these products, the necessity of zoning them for optimum and optimal utilization seems necessary. Traditional zoning solutions are not efficient due to their low accuracy and speed, therefore a new approach is needed. Remote sensing data have many applications in various fields including target detection because of their spectral, spatial and temporal information of land surface phenomena. In this paper, target detection methods including Constrained Energy Minimization (CEM), Matched Filtering (MF), Adjusted Spectral Matched Filter (ASMF) and Adaptive Coherence Estimator (ACE) are used to detect Amygdalus Scoparia in Sentinel-2 satellite time series images. In this process, firstly, the filtering of undesirable effects (unlikely areas of plant growth) is eliminated from the time series of images. Then, with the help of hyper heuristic optimization, the optimal features from time-series were identified to reduce the dimension from one hand and increase the detection accuracy from the other hand. The final detection map is generated by weighting the results obtained from each training sample with a different share of the target. The generalizability of the proposed solution was evaluated using the selected optimal features elsewhere, using the ground truth map. The ROC and its sub-area (AUC) are used to evaluate the results. In the optimization phase for feature selection, the AUC index for all detection methods used was greater than 0.99. The best results in this process were obtained by the CEM detection method, which achieved the accuracy of 0.993 and 0.846 in the optimization and independent evaluation, respectively. The results of this study indicate the ability of Sentinel-2 multiplexed time series images to detect targets such as medicinal plants.

Download for Free

Sign up for free to access the full text

Already have an account?login

similar resources

An Automatic Detection of the Fire Smoke Through Multispectral Images

One of the consequences of a fire is smoke. Occasionally, monitoring and detection of this smoke can be a solution to prevent occurrence or spreading a fire. On the other hand, due to the destructive effects of the smoke spreading on human health, measures can be taken to improve the level of health services by zoning and monitoring its expansion process. In this paper, an automated method is p...

full text

Oil spill detection using in Sentinel-1 satellite images based on Deep learning concepts

Awareness of the marine area is very important for crisis management in the event of an accident. Oil spills are one of the main threats to the marine and coastal environments and seriously affect the marine ecosystem and cause political and environmental concerns because it seriously affects the fragile marine and coastal ecosystem. The rate of discharge of pollutants and its related effects o...

full text

Algorithms for Segmenting Time Series

As with most computer science problems, representation of the data is the key to ecient and eective solutions. Piecewise linear representation has been used for the representation of the data. This representation has been used by various researchers to support clustering, classication, indexing and association rule mining of time series data. A variety of algorithms have been proposed to obtain...

full text

Automatic Road Detection and Extraction From MultiSpectral Images Using a New Hierarchical Object-based Method

Road detection and Extraction is one of the most important issues in photogrammetry, remote sensing and machine vision. A great deal of research has been done in this area based on multispectral images, which are mostly relatively good results. In this paper, a novel automated and hierarchical object-based method for detecting and extracting of roads is proposed. This research is based on the M...

full text

A Sparse Representation Method to Detect Saffron Agricultural Lands Using Sentinel-II Satellite Images Time

Nowadays, agricultural management via remote sensing technology has gained a special position among managers and the people who are in charge of this industry. Saffron (Red Gold) is one of specific Iran’s agricultural products with a high economic valance which is used in different fields of food and medical industries. Considering the cultivation conditions of the saffron, there has not a pers...

full text

detection of volatile compounds of medicinal plants with some nano-sorbents using modified or new methodologies and investigation of antioxidant activity of their methanolic extracts

in this work, a novel and fast method for direct analysis of volatile compounds (davc) of medicinal plants has been developed by holding a filament from different parts of a plant in the gc injection port. the extraction and analysis of volatile components of a small amount of plant were carried out in one-step without any sample preparation. after optimization of temperature, extraction time a...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 4

pages  193- 214

publication date 2020-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023