Generating the Visual Biofeedback Signals Applicable to Reduction of Wrist Spasticity: A Pilot Study on Stroke Patients

Authors

  • Afsane Zadnia Research Center of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
  • Hamid Reza Kobravi Research Center of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
  • Hossein Asghar Hosseini Department of Physiotherapy, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
  • Mania Sheikh Department of Physiotherapy, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
Abstract:

Introduction: Application of biofeedback techniques in rehabilitation has turned into an exciting research area during the recent decade. Providing an appropriate visual or auditory biofeedback signal is the most critical requirement of a biofeedback technique. In this regard, changes in Surface Electromyography (SEMG) signals during wrist movement can be used to generate an indictable visual biofeedback signal for wrist movement rehabilitation via SEMG biofeedback. This paper proposes a novel methodology for selecting the most appropriate features out of wrist muscle SEMG signals.  Methods: To this end, the surface EMG signals from flexor and extensor muscle groups during wrist joint movements were recorded and analyzed. Some linear and nonlinear features in frequency, time, and time-frequency domains were extracted from the recorded surface EMG signals of the flexor and extensor muscles. Experiments and analyses were performed on ten healthy subjects and four stroke patients with wrist muscle spasticity as the movement disorder subjects. Some heuristic feature selection measures were applied. The main motivation behind choosing applied heuristic feature selection measures was meeting. In the first step, the designed visual biofeedback signal should indicate a healthy wrist motion profile as its successful tracking by the patient guarantees rehabilitation. In addition, the visual biofeedback signal should be a smooth curve thus preventing the patient from discomfort while tracking it on a monitor during the biofeedback therapy.  Results: In this pilot study, after using the introduced feature selection measures, quantitative and qualitative analyses of the extracted features indicated that Shannon entropy is the most appropriate feature for generating a visual biofeedback signal as a healthy wrist motion profile to improve the ability of stroke patients in controlling wrist joint motion. In addition, it was shown that when the wrist joint moves between a flexed and rest position, the flexor muscle EMG signal should be used for generating a visual biofeedback signal. However when the wrist joint moves between a rest position and an extended position, the extensor muscle EMG signal is appropriate for providing a visual biofeedback signal. It is worth noting that the achieved pilot study results should be confirmed by the future studies with larger samples. Conclusion: According to the obtained results, it can be concluded that among the analyzed features, the Shannon entropy was the most appropriate feature. It can be employed for generating a visual biofeedback signal for reduction of spasticity in patients with stroke.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

the effect of consciousness raising (c-r) on the reduction of translational errors: a case study

در دوره های آموزش ترجمه استادان بیشتر سعی دارند دانشجویان را با انواع متون آشنا سازند، درحالی که کمتر به خطاهای مکرر آنان در متن ترجمه شده می پردازند. اهمیت تحقیق حاضر مبنی بر ارتکاب مکرر خطاهای ترجمانی حتی بعد از گذراندن دوره های تخصصی ترجمه از سوی دانشجویان است. هدف از آن تاکید بر خطاهای رایج میان دانشجویان مترجمی و کاهش این خطاها با افزایش آگاهی و هوشیاری دانشجویان از بروز آنها است.از آنجا ک...

15 صفحه اول

Validity of Modified Ashworth Scale as a Measure of Wrist Spasticity in Stroke Patients

Objectives: There are some controversies about the value of modified Ashworth Scale (MAS) for assessing spasticity. The goal of this study was to investigate if there is any correlation between scores obtained from MAS for wrist spasticity and electrophysiological recordings as the objective measure of spasticity. Methods: In this cross-sectional study, 34 stroke patients were employed. Wris...

full text

Effects of Visual Biofeedback Therapy on Postural Balance of Stroke Patients

Purpose: Postural balance deficit is one of the common post-stroke disabilities. Providing visual biofeedback while balance activities are performed is a way to improve postural balance disorders following stroke. But among the research published, there is incoherency about the positive effects of visual biofeedback therapy. The purpose of this study was to investigate the effects of usin...

full text

from linguistics to literature: a linguistic approach to the study of linguistic deviations in the turkish divan of shahriar

chapter i provides an overview of structural linguistics and touches upon the saussurean dichotomies with the final goal of exploring their relevance to the stylistic studies of literature. to provide evidence for the singificance of the study, chapter ii deals with the controversial issue of linguistics and literature, and presents opposing views which, at the same time, have been central to t...

15 صفحه اول

a study on the effectiveness of textual modification on the improvement of iranian upper-intermediate efl learners’ reading comprehension

این پژوهش به منظور بررسی تأثیر اصلاح متنی بر بهبود توانایی درک مطلب زبان آموزان ایرانی بالاتر از سطح میانی انجام پذیرفت .بدین منظور 115 دانشجوی مرد و زن رشته مترجمی زبان انگلیسی در این پزوهش شرکت نمودند.

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 1

pages  15- 26

publication date 2018-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023