FTIR Biospectroscopy Investigation on Cisplatin Cytotoxicity in Three Pairs of Sensitive and Resistant Cell Line

Authors

  • Ensieh Farhadi Department of Toxicology and Pharmacology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
  • Farshad Shirazi Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
Abstract:

Fourier Transformed Infrared Spectroscopy (FTIR) has extensively been used for biological applications. Cisplatin is one the most useful antineoplastic chemotherapy drugs for a variety of different human cancers. One of the clinical problems in its application, which would consequently affect the therapeutic outcome of its application, is the occurrence of resistance to this agent. In this project three different pairs of sensitive and resistant cell lines of human ovarian A2780 and its resistant pair of A2780-CP, human ovarian OV2008 and its resistant pair of C13, and finally human lung carcinoma of HTB56 and its resistant pair of HTB56-CP were grown in the laboratory under the standard procedure. Saline was exposed to control cells, whereas 1, 5 and 10 µg/ml of cisplatin was exposed to experimental cells, for one hour. Cells were then collected and lyophilized from which spectra were taken. According to our results, we could not trigger a well-recognized cells biomolecular band at 1015 cm-1, being modified after exposure to cisplatin in all cell lines. On the other hand, there was a clear dose-dependent increase in protein β-sheet structure related peaks shift in resistant cell lines after exposure to cisplatin. This would probably indicate an easier protein interaction site for cisplatin in the resistant cell lines, which would probably inhibit cisplatin from binding to DNA, as the cytotoxic target. As a conclusion, FTIR biospectroscopy has proven its potency to identify the interactions, as well as the false engagement cellular sites for cisplatin in sensitive and resistant cell lines.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

ftir biospectroscopy investigation on cisplatin cytotoxicity in three pairs of sensitive and resistant cell line

fourier transformed infrared spectroscopy (ftir) has extensively been used for biological applications. cisplatin is one the most useful antineoplastic chemotherapy drugs for a variety of different human cancers. one of the clinical problems in its application, which would consequently affect the therapeutic outcome of its application, is the occurrence of resistance to this agent. in this proj...

full text

Cisplatin Resistant Patterns in Ovarian Cell Line Using FTIR and Principle Component Analysis

Cisplatin is a common chemotherapeutic agent that used for treatment of many solid cancers. Rapid identification of chemotherapy resistance is very important and may lead to effective treatment plan. Spectroscopy techniques, such as infrared spectroscopy, which are sensitive to biochemical composition of samples, have shown potentials to discriminate tissues. Developing in Fourier transform inf...

full text

Cisplatin Resistant Patterns in Ovarian Cell Line Using FTIR and Principle Component Analysis

Cisplatin is a common chemotherapeutic agent that used for treatment of many solid cancers. Rapid identification of chemotherapy resistance is very important and may lead to effective treatment plan. Spectroscopy techniques, such as infrared spectroscopy, which are sensitive to biochemical composition of samples, have shown potentials to discriminate tissues. Developing in Fourier transform inf...

full text

cisplatin resistant patterns in ovarian cell line using ftir and principle component analysis

cisplatin is a common chemotherapeutic agent that used for treatment of many solid cancers. rapid identification of chemotherapy resistance is very important and may lead to effective treatment plan. spectroscopy techniques, such as infrared spectroscopy, which are sensitive to biochemical composition of samples, have shown potentials to discriminate tissues. developing in fourier transform inf...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 15  issue 1

pages  213- 220

publication date 2016-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023