Free Vibration Analysis of Microtubules as Orthotropic Elastic Shells Using Stress and Strain Gradient Elasticity Theory

Authors

  • F Mokhtari Faculty of Engineering, Shahrekord University
  • Y Tadi Beni Nanotechnology Research Center, Shahrekord University
Abstract:

In this paper, vibration of the protein microtubule, one of the most important intracellular elements serving as one of the common components among nanotechnology, biotechnology and mechanics, is investigated using stress and strain gradient elasticity theory and orthotropic elastic shells model. Microtubules in the cell are influenced by internal and external stimulation and play a part in conveying protein substances and taking medications to the intended targets. Therefore, in order to control the biological cell functions, it is important to know the vibrational behavior of microtubules. For this purpose, using the cylindrical shell model which fully corresponds to microtubule geometry, and by considering it as orthotropic which is closer to reality, based on gradient elasticity theory, frequency analysis of the protein microtubule is carried out by considering Love’s thin shell theory and Navier solution. Also, the effect of size parameter and other variables on the results are investigated.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Vibration Analysis of Orthotropic Triangular Nanoplates Using Nonlocal Elasticity Theory and Galerkin Method

In this article, classical plate theory (CPT) is reformulated using the nonlocal differential constitutive relations of Eringen to develop an equivalent continuum model for orthotropic triangular nanoplates. The equations of motion are derived and the Galerkin’s approach in conjunction with the area coordinates is used as a basis for the solution. Nonlocal theories are employed to bring out the...

full text

Static analysis of rectangular nanoplates using exponential shear deformation theory based on strain gradient elasticity theory

In this research, the bending analysis of rectangular nanoplates subjected to mechanical loading is investigated. For this purpose, the strain gradient elasticity theory with one gradient parameter is presented to study the nanoplates. From the best knowledge of authors, it is the first time that the exponential shear deformation formulation based on strain gradient elasticity theory is carried...

full text

Free vibration and wave propagation of thick plates using the generalized nonlocal strain gradient theory

In this paper, a size-dependent first-order shear deformation plate model is formulated in the framework of the higher-order generalized nonlocal strain-gradient (GNSG) theory. This modelemploys ...

full text

Vibration Analysis of Magneto-Electro-Elastic Timoshenko Micro Beam Using Surface Stress Effect and Modified Strain Gradient Theory under Moving Nano-Particle

In this article, the free vibration analysis of magneto-electro-elastic (MEE) Timoshenko micro beam model based on surface stress effect and modified strain gradient theory (MSGT) under moving nano-particle is presented. The governing equations of motion using Hamilton’s principle are derived and these equations are solved using differential quadrature method (DQM). The effects of dimensionless...

full text

Vibration Analysis of a Rotating Nanoplate Using Nonlocal Elasticity Theory

The nanostructures under rotation have high promising future to be used in nano-machines, nano-motors and nano-turbines. They are also one of the topics of interests and it is new in designing of rotating nano-systems. In this paper, the scale-dependent vibration analysis of a nanoplate with consideration of the axial force due to the rotation has been investigated. The governing equation and b...

full text

static analysis of rectangular nanoplates using exponential shear deformation theory based on strain gradient elasticity theory

in this research, the bending analysis of rectangular nanoplates subjected to mechanical loading is investigated. for this purpose, the strain gradient elasticity theory with one gradient parameter is presented to study the nanoplates. from the best knowledge of authors, it is the first time that the exponential shear deformation formulation based on strain gradient elasticity theory is carried...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 3

pages  511- 529

publication date 2016-09-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023