Free Vibration Analysis of 2D Functionally Graded Annular Plate considering the Effect of Material Composition via 2D Differential Quadrature Method
Authors
Abstract:
This study investigates the free vibration of the Two-Dimensional Functionally Graded Annular Plates (2D-FGAP). The theoretical formulations are based on the three-dimensional elasticity theory with small strain assumption. The Two-Dimensional Generalized Differential Quadrature Method (2D-GDQM) as an efficient and accurate semi-analytical approach is used to discretize the equations of motion and to implement the various boundary conditions. The fast rate of convergence for this method is shown and the results are compared with the existing results in the literature. The material properties are assumed to be continuously changing along thickness and radial directions simultaneously, which can be varied according to the power law and exponential distributions, respectively. The effects of the geometrical parameters, the material graded indices in thickness and radial directions, and the mechanical boundary conditions on the frequency parameters of the two-dimensional functionally graded annular plates are evaluated in detail. The results are verified to be against those given in the literature.
similar resources
Free vibration analysis of functionally graded rectangular plates via differential quadrature method
In this study, free vibration of functionally graded rectangular plates for various types of boundary conditions has been presented . The properties of the plate are assumed as power- law form along the thickness direction , while poisson's ratio is kept constant. the linear vibration equations of functionally graded rectangular plates are derived based on first order shear deformation theory b...
full textFree Vibration Analysis of Functionally Graded Piezoelectric Material Beam by a Modified Mesh Free Method
A mesh-free method based on moving least squares approximation (MLS) and weak form of governing equations including two dimensional equations of motion and Maxwell’s equation is used to analyze the free vibration of functionally graded piezoelectric material (FGPM) beams. Material properties in beam are determined using a power law distribution. Essential boundary conditions are imposed by the...
full textFree and Forced Vibration Analysis of Functionally Graded Material Cylinders by a Mesh-Free Method
In this paper, free and forced vibration analysis of functionally graded material cylinders was carried out by mesh-free and finite element method. In this analysis, MLS shape functions are used for approximation of displacement field in the weak form of motion equation and essential boundary conditions are imposed by transformation method. Resulted set of differential equations are solved usin...
full textFree vibration analysis of thin annular plates integrated with piezoelectric layers using differential quadrature method
In this article, using generalized differential quadrature (GDQ) methods, free vibration of a thin annular plate coupled with two open circuit piezoelectric layers, is numerically studied based on the classical plate theory. The governing differential equations with respective boundary conditions are derived and transformed into a set of algebraic equations by implementing the GDQ rule, then so...
full textAnalysis of Free Vibration Sector Plate Based on Elastic Medium by using New Version of Differential Quadrature Method
The new version of differential quadrature (DQ) method is extended to analyze the free vibration of thin sector orthotropic plates on the Pasternak elastic foundation with various sector angles and elastic parameters. Detailed formulations are given. Comparisons are made with existing analytical and/or numerical data. Numerical results indicate that convergence can be achieved with increasing i...
full textEffect of temperature on free vibration of functionally graded microbeams
Modified couple stress theory is applied to study of temperature effects on free vibration of Timoshenko functionally graded microbeams. Due to the interatomic and microstructural reactions of the structures in micro scale, the dynamic behavior of the microbeam is predicted more accurate applying the couple stress theory. Both of the simply supported and clamped boundary conditions are assumed ...
full textMy Resources
Journal title
volume 2 issue 2
pages 95- 111
publication date 2015-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023