Free Convection Flow and Heat Transfer of Nanofluids of Different Shapes of Nano-Sized Particles over a Vertical Plate at Low and High Prandtl Numbers

author

  • Gbeminiyi Sobamowo Department of Mechanical Engineering, University of Lagos, Akoka, Lagos, Nigeria
Abstract:

In this paper, free convection flow and heat transfer of nanofluids of differently-shaped nano-sized particles over a vertical plate at very low and high Prandtl numbers are analyzed.  The governing systems of nonlinear partial differential equations of the flow and heat transfer processes are converted to systems of nonlinear ordinary differential equation through similarity transformations. The resulting systems of fully-coupled nonlinear ordinary differential equations are solved using a differential transformation method - Padé approximant technique. The accuracy of the developed approximate analytical methods is verified by comparing the results of the differential transformation method - Padé approximant technique with those of previous works as presented in the literature. Thereafter, the analytical solutions are used to investigate the effects of the Prandtl number, the nanoparticles volume-fraction, the shape and the type on the flow and heat transfer behaviour of various nanofluids over the flat plate. It is observed that as the Prandtl number and volume-fraction of the nanoparticles in the basefluid increase, the velocity of the nanofluid decreases while the temperature increases.  Also, the maximum decrease in velocity and the maximum increase in temperature are recorded in lamina-shaped nanoparticles, followed by platelets, cylinders, bricks, and sphere-shaped nanoparticles, respectively. Using a common basefluid for all nanoparticle types, it is established that the maximum decrease in velocity and the maximum increase in temperature are recorded in TiO2 followed by CuO, Al2O3 and SWCNTs nanoparticles, respectively. It is hoped that the present study will enhance the understanding of free convection boundary-layer problems as applied in various industrial, biological and engineering processes.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Fluid Flow and Heat Transfer of Nanofluids over a Flat Plate with Conjugate Heat Transfer

The falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. This phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. In this paper, the coupling of conduction (inside the plate) and forced convection of a non-homogeneous nanofluid flow (over a flat plate) ...

full text

Insight into the Boundary Layer Flows of Free Convection and Heat Transfer of Nanofluids over a Vertical Plate using Multi-Step Differential Transformation Method

This paper presents an insight into the boundary layer of free convection and heat transfer of nanofluids over a vertical plate at very low and high Prandtl number. Suitable similarity variables are used to convert the governing systems of nonlinear partial differential equations of the flow and heat transfer to systems of nonlinear ordinary differential equations which are solved using multi-s...

full text

Transient Natural Convection Flow on an Isothermal Vertical Wall at High Prandtl Numbers: Second-Order Approximation

The method of matched asymptotic expansions, which has been used in previous studies of steady natural convection flow, is extended here to transient natural convection flow at high Prandtl number (Pr). Second-order expansion solutions, valid for large Prandtl numbers, are presented for the transient natural convection flow near a vertical surface which undergoes a step change in temperature. T...

full text

synthesis of amido alkylnaphthols using nano-magnetic particles and surfactants

we used dbsa and nano-magnetic for the synthesis of amido alkylnaphtols.

15 صفحه اول

fluid flow and heat transfer of nanofluids over a flat plate with conjugate heat transfer

the falling and settling of solid particles in gases and liquids is a natural phenomenon happens in many industrial processes. this phenomenon has altered pure forced convection to a combination of heat conduction and heat convection in a flow over a plate. in this paper, the coupling of conduction (inside the plate) and forced convection of a non-homogeneous nanofluid flow (over a flat plate) ...

full text

extraction and characterization of allium irancum plant extract and its application in the green synthesis of silver nano particles and oxidation of thiocarbony1 compounds

سنتز سبز نانوذرات فلزی (nps) درسالهای اخیر توجه بسیارزیادی را به خود جلب کرده است. زیرا این پروتوکل کم هزینه وسازگار با محیط زیست از روش های استاندارد سنتز. در این پایان نامه ما گزارش میکنیم یک روش ساده و سازگار با محیط زیست برای سنتز نانوذرات نقره با استفاده از محلول آبی عصاره گیاه allium iranicum به عنوان یک عامل کاهش دهنده ی طبیعی. نانو ذرات نقره مشخص شد با استفاده از تکنیک های uv-visible، x...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 1

pages  13- 39

publication date 2019-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023