Facile Synthesis of Nanosized MgO as Adsorbent for Removal of Congored Dye from Wastewate

Authors

  • Akram Hosseinian School of Engineering Science, College of Engineering, University of Tehran, Tehran, Iran
Abstract:

Nanostructures of magnesium oxide is one of the most attractive materials which have shown various applications in many aspects of industries. So, finding a controllable and inexpensive technique to produce desirable nanostructures of MgO is valuable. In this work, magnesium oxide (MgO) with different morphologies was successfully prepared via a simple solid-state method. The molar ratio of sodium hydroxide to magnesium salt precursor was obtained 1 to 8. Furthermore, the effect of different magnesium precursors (magnesium chloride and magnesium acetate) on the morphology of MgO was investigated. It was shown that adding halide salts (NaX) to the solid-state reaction media, in spite of the noteworthy influence on the product morphology, facilitate the formation of MgO phase from Mg(OH)2. The synthesized magnesium oxide particles were characterized by Fourier transform infrared (FTIR) spectrometer, scanning electron microscope (SEM) and X-ray diffraction (XRD). Synthesized magnesium oxide particles were used to remove congored dye from waste water.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Fabrication of Nanoporous Functionalized Hydroxyapatite as High Performance Adsorbent for Acid Blue 25 Dye Removal

In this study, nanoporous hydroxyapatite was synthesized and functionalized via tetraethylenepentamine in order to obtain a novel adsorbent for efficient removal of Acid Blue 25 dye from aqueous solution. Functionalized hydroxyapatite was characterized by Fourier transform infrared spectroscopy (FTIR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (...

full text

Application of Magnetic Nano Adsorbent Fe2O3 for Removal of Hazardous Ponceau-S Dye from Aqueous Solution

The photodegradation of Ponceau-S dye was investigated using UV radiation in presence of nanosized Fe2 O3 .Removal efficiency of Ponceau-S was sensitive to the operational parameters such as dye concentration, catalyst dose, pH, contact time, TOC and COD. The photocatalytic treatment of red colored Ponceau-S dye by magnetic nano semiconductor (Fe2 O3 )is an effective, economic and faster mode. ...

full text

Amine Functionalized Kit-6 Mesoporous Magnetite Nanocomposite as an Efficient Adsorbent for Removal of Ponceau 4R Dye from Aqueous Solutions

In this study, amine functionalized Kit-6 silica mesoporous magnetite nanocomposite (NH2-MMNC) was synthesized by chemical methods and used as an efficient and recoverable adsorbent for removal of Ponceau 4R, as a toxic dye, from aqueous solutions. The synthesized nanocomposites were characterized by XRD, FT-IR, BET and SEM instruments. The effect of various experimental parameters on the dye r...

full text

Evaluation Low Cost Adsorbent of Walnut Bark Granule for Methylene Blue Dye Removal from Aqueous Environments

Background & Aims of the Study: Methylene blue (MB) is a risk for human and environment. Adsorption process is one of the removal mechanisms of MB. The purpose of this research was the evaluation of low cost adsorbent of walnut bark granule for MB dye removal from aqueous environments. Materials & Methods: In this experimental research, the effect of various operating parameters...

full text

Sawdust as a natural and low cost adsorbent for the removal of brilliant cresyl blue dye from water samples

Sawdust which is the main waste from wood industry has been used as a raw material forremoval of Brilliant Cresyl Blue toxic dye. The effects of various parameters such as pH,electrolyte concentration, adsorbent dose, contact time and agitation rate were studied for theremoval of the dye in a concentration of 50 mg L-1. The optimum condition for the studiedparameters was applied for various con...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 1

pages  85- 91

publication date 2018-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023