Experimental Investigation on Hydrodynamic and Thermal Performance of a Gas-Liquid Thermosyphon Heat Exchanger in a Pilot Plant
Authors
Abstract:
Waste heat recovery is very important, because not only it reduces the expenditure of heat generation, but also it is of high priority in environmental consideration, such as reduction in greenhouse gases. One of the devices is used in waste heat recovery is heat pipe heat exchanger.Anexperimental research has been carried out to investigate the hydrodynamic and thermal performance of a gas- liquid thermosyphon heat exchanger “THE” in a pilot plant. The ε-NTU method has been used. The pressure drop has been calculated across tube bundle of the thermosyphon heat exchanger. It's module is composed of 6 “rows” and 15 “columns” copper pipes with aluminum plate fins with dimensions of 130 cm “height”, 47 cm “width” and 20 cm “depth” . The tubes have been filled by water with filling ratio of 30 %, 50 % and 70 %. The density and thickness of fins are 300 fin/m and 0.4 mm, respectively. The configuration of tubes is in-line with 30 mm pitch. The results show that as the ratio of Ce/Cc raises the amount of heat transfer increases. The effectiveness of heat pipe heat exchanger remains constant as the temperature of hot stream rises, but the amount of heat transfer increases. Filling ratio in normal region (30-70 %) has no effects on experimental results. A new correlation for thermosyphon heat exchanger with individual finned tubes and in-line geometry has been proposed for calculating pressure drop across tube bank of a “THE”. The error in pressure drop for 40 experimental points in the new correlation is less than 15 %. This indicates that the new correlation possesses an acceptable accuracy predicting pressure drop.
similar resources
Experimental and Numerical Analysis of Flow and Heat Transfer in a Gas-Liquid Thermosyphon Heat Exchanger in a Pilot Plant
A numerical and experimental investigation of flow and heat transfer in a gas- liquid Thermosyphon Heat Exchanger "THE" with built in heat pipes and aluminum plate fins for moderate Reynolds numbers has been carried out. It's module is composed of 6 rows and 15 columns copper pipes with aluminum plate fins with dimensions of 130cm height, 47cm width and 20cm depth. The tubes have been fill...
full textAn Experimental and Theoretical Investigation on Thermal Performance of a Gas-Liquid Thermosyphon Heat Pipe Heat Exchanger in a Semi-Industrial Plant
"> Waste heat recovery is very important, because it not only reduces the expenditure of heat generation, but also it is of high...
full textAn experimental investigation of heat transfer of Fe2O3/Water nanofluid in a double pipe heat exchanger
One way to increase the heat transfer is to use perforated twisted tapes with different hole diameters, which largely improve heat transfer with an increase in the heat transfer area at the constant volume and more mixed flow. In the previous studies, the effect of nanofluids with perforated twisted tapes is less studied. In this work, the performance of water / iron oxide nanofluid in a double...
full textAn experimental investigation of heat transfer of Fe2O3/Water nanofluid in a double pipe heat exchanger
One way to increase the heat transfer is to use perforated twisted tapes with different hole diameters, which largely improve heat transfer with an increase in the heat transfer area at the constant volume and more mixed flow. In the previous studies, the effect of nanofluids with perforated twisted tapes is less studied. In this work, the performance of water / iron oxide nanofluid in a double...
full textStudy on Thermal and Hydrodynamic Indexes of a Nanofluid Flow in a Micro Heat Sink
The paper numerically presents laminar forced convection of a nanofluid flowing in a duct at microscale. Results were compared with both analytical and experimental data and observed good concordance with previous studies available in the literature. Influences of Brinkman and Reynolds number on thermal and hydrodynamic indexes have been investigated. For a given nanofluid, no change in efficie...
full textMy Resources
Journal title
volume 27 issue 3
pages 115- 126
publication date 2008-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023