Expansion methods for solving integral equations with multiple time lags using Bernstein polynomial of the second kind

Authors

  • M. Paripour Department of Mathematics, Hamedan University of Technology, Hamedan, 65156-579, Iran
  • S. Abdolahi Department of Mathematics, Arak Branch, Islamic Azad University, Arak, Iran
  • Z. Shojaei Department of Mathematics, Lorestan University, Khoramabad, Iran
Abstract:

In this paper, the Bernstein polynomials are used to approximate the solutions of linear integral equations with multiple time lags (IEMTL) through expansion methods (collocation method, partition method, Galerkin method). The method is discussed in detail and illustrated by solving some numerical examples. Comparison between the exact and approximated results obtained from these methods is carried out.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

expansion methods for solving integral equations with multiple time lags using bernstein polynomial of the second kind

in this paper, the bernstein polynomials are used to approximate the solutions of linear integral equations with multiple time lags (iemtl) through expansion methods (collocation method, partition method, galerkin method). the method is discussed in detail and illustrated by solving some numerical examples. comparison between the exact and approximated results obtained from these methods is...

full text

APPLICATION OF FUZZY EXPANSION METHODS FOR SOLVING FUZZY FREDHOLM- VOLTERRA INTEGRAL EQUATIONS OF THE FIRST KIND

In this paper we intend to offer new numerical methods to solvethe fuzzy Fredholm- Volterra integral equations of the firstkind $(FVFIE-1)$. Some examples are investigated to verify convergence results and to illustrate the efficiently of the methods.  

full text

A Fast and Accurate Expansion-Iterative Method for Solving Second Kind Volterra Integral Equations

This article proposes a fast and accurate expansion-iterative method for solving second kind linear Volterra integral equations. The method is based on a special representation of vector forms of triangular functions (TFs) and their operational matrix of integration. By using this approach, solving the integral equation reduces to solve a recurrence relation. The approximate solution of integra...

full text

Degenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind

Degenerate kernel approximation method is generalized to solve Hammerstein system of Fredholm integral equations of the second kind. This method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. Convergence analysis is investigated and on some test problems, the propo...

full text

Solving Volterra Integral Equations of the Second Kind with Convolution ‎Kernel‎

In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad ‎et al., ‎‎[K. Maleknejad ‎and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, ‎Appl. Math. Comput.‎ (2005)]‎ to gain...

full text

Application of Chebyshev Polynomials for Solving Abel's Integral Equations of the First and Second Kind

In this paper, a numerical implementation of an expansion method is developed for solving Abel's integral equations of the first and second kind. The solution of such equations may demonstrate a singular behaviour in the neighbourhood of the initial point of the interval ofintegration. The suggested method is based on the use of Taylor series expansion to overcome the singularity which le...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 03  issue 01

pages  35- 45

publication date 2014-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023